

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Welcome to the OpenAMP Project Documentation

Contents:

	OpenAMP Project
	Project Overview

	Samples and Demos

	Contributing to the OpenAMP Project

	Links

	OpenAMP Protocol Details
	Asymmetric Multiprocessing Intro

	Components and Capabilities

	RPMsg Messaging Protocol

	RPMsg Communication Flow

	Life Cycle Management

	System Wide Considerations

	Resource Table Evolution

	OpenAMP Design Docs

	OpenAMP Libraries User Guide
	Data Structures

	Porting GuideLine

Indices and tables

	Index

	Module Index

	Search Page

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

OpenAMP Project

Contents:

	Project Overview
	OpenAMP Intro

	Operating Environments

	OpenAMP Capabilities

	OpenAMP Guidelines

	Samples and Demos
	System Reference Samples and Demos on the AMD-Xilinx platform

	System Reference Samples and Demos on STM32MP157C/F-DK2 board

	linux_rpc_demo

	OpenAMP Demo Docker images

	Hypervisorless virtio binary demo (openamp/demo-lite)

	Lopper Demonstration

	Contributing to the OpenAMP Project
	Release Cycle

	Roadmap discussion and publication

	Patch process

	Platform maintainers

	Push rights

	Links

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Project Overview

OpenAMP Intro

OpenAMP is a community effort that is standardizing and implementing how multiple embedded environments interact with each other using AMP. It provides conventions and standards as well as an open source implementation to facilitate AMP development for embedded systems. Read more about Asymmentric Multiprocessing here.

The vision is that regardless of the operating environment/operating system, it should be possible to use identical interfaces to interact with other operating environments in the same system.

Furthermore, these operating environments can interoperate over a standardized protocol, making it possible to mix and match any two or more operating systems in the same device.

Read more about OpenAMP System Considerations here.

To accomplish the above, OpenAMP is divided into the following efforts:

	
	A standardization group under Linaro Community Projects
	
	
	Standardizing the low-level protocol that allows systems to interact (more info here)
	
	Built on top of virtio [https://github.com/OpenAMP/open-amp/wiki/OpenAMP-RPMsg-Virtio-Implementation] BROKEN LINK

	
	Standardizing on the user level APIs that allow applications to be portable
	
	RPMSG [https://github.com/OpenAMP/open-amp/wiki/RPMsg-API-Usage] BROKEN LINK

	remoteproc

	Standardizing on the low-level OS/HW abstraction layer that abstracts the open source implementation from the underlying OS and hardware, simplifying the porting to new environments

	
	An open source project that implements a clean-room implementation of OpenAMP
	
	Runs in multiple environments, see below

	BSD License

	Please join the OpenAMP open source project!

	See https://github.com/OpenAMP/open-amp

Operating Environments

OpenAMP is supported in various operating environments through an a) OpenAMP open source project (OAOS), b) a Linux kernel project (OALK), and c) multiple proprietary implementations (OAPI). The Linux kernel support (OALK) comes through the regular remoteproc/RPMsg/Virtio efforts in the kernel.

The operating environments that OpenAMP supports include:

	Linux user space - OAOS

	Linux kernel - OALK

	Multiple RTOS’s - OAOS/OAPI including Nucleus, FreeRTOS, uC/OS, VxWorks and more

	Bare Metal (No OS) - OAOS

	In OS’s on top of hypervisors - OAOS/OAPI

	Within hypervisors - OAPI

OpenAMP Capabilities

OpenAMP currently supports the following interactions between operating environments:

	Lifecycle operations - Such as starting and stopping another environment

	Messaging - Sending and receiving messages

	Proxy operations - Remote access to systems services such as file system

Read more about the OpenAMP System Components here.

In the future OpenAMP is envisioned to also encompass other areas important in a heterogeneous environment, such as power management and managing the lifecycle of non-CPU devices.

OpenAMP Guidelines

There are a few guiding principles that governs OpenAMP:

	
	Provide a clean-room implementation of OpenAMP with business friendly APIs and licensing
	
	Allow for compatible proprietary implementations and products

	
	Base as much as possible on existing technologies/open source projects/standards
	
	In particular remoteproc, RPMsg and virtio

	Never standardize on anything unless there is an open source implementation that can prove it

	
	Always be backwards compatible (unless there is a really, really good reason to change)
	
	In particular make sure to be compatible with the Linux kernel implementation of remoteproc/RPMsg/virtio

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Samples and Demos

Contents:

	System Reference Samples and Demos on the AMD-Xilinx platform

	System Reference Samples and Demos on STM32MP157C/F-DK2 board

	linux_rpc_demo

	OpenAMP Demo Docker images

	Hypervisorless virtio binary demo (openamp/demo-lite)

	Lopper Demonstration

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

System Reference Samples and Demos on the AMD-Xilinx platform

	Demo: echo_test
	Remote Processor firmware (image_echo_test)

	Run the demo

	Demo: matrix multiply
	Remote Processor firmware (image_matrix_multiply)

	Run the demo

	Demo: proxy_app
	Remote Processor firmware (image_rpc_demo)

	Run the demo

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Demo: echo_test

This demo uses the Linux kernel rpmsg framework to send various size of data buffer to remote
processor and validates integrity of received buffer from remote processor.
If buffer data does not match, then number of different bytes are reported on
console.

Platform: Xilinx Zynq UltraScale+ MPSoC(a.k.a ZynqMP)

Board: ZynqMP Zcu102

Remote Processor firmware (image_echo_test)

	Remote processor firmware for Xilinx ZynqMP cortex-r5 platform based on: rpmsg-echo.c [https://github.com/OpenAMP/open-amp/blob/main/apps/examples/echo/rpmsg-echo.c]

	Instructions to compile: ZynqMP r5f generic baremetal [https://github.com/OpenAMP/open-amp/blob/main/README.md#example-to-compile-zynq-ultrascale-mpsoc-r5-genericbaremetal-remote]

	RPU firmware elf file is expected in sdk at path: /lib/firmware/

	Xilinx Vendor specific SDK is required to build RPU firmware: Xilinx Petalinux [https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html]

	More information is provided here: Xilinx Wiki page for OpenAMP [https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841718/OpenAMP]

Run the demo

Assume all the binaries are board specific.

Specify remote processor firmware to be loaded.
echo image_echo_test > /sys/class/remoteproc/remoteproc0/firmware

Load and start target firmware onto remote processor
echo start > /sys/class/remoteproc/remoteproc0/state

check remote processor state
cat /sys/class/remoteproc/remoteproc0/state

load rpmsg_char driver
modprobe rpmsg_char

load rpmsg_ctrl driver
modprobe rpmsg_ctrl

Run echo_test application on host processor
echo_test

unload rpmsg_ctrl driver
modprobe -r rpmsg_ctrl

#unload rpmsg_char driver
modprobe -r rpmsg_char

Stop remote processor
echo stop > /sys/class/remoteproc/remoteproc0/state

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Demo: matrix multiply

This example demonstrate interprocessor communication using rpmsg framework
in the Linux kernelspace. Host (this) application generates two random matrices and send
them to remote processor using rpmsg framework in the Linux kernelspace and waits for
the response. Remote processor firmware receives both matrices and
multiplies them and sends result back to host processor.
Host processor prints the result on console after receiveing it.
If -n option is passed, then above demo runs times.
User can also pass custom endpoint information with -s (source address)
and -e (destination address) options as well.

 Demo: proxy_app

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Demo: proxy_app

This app demonstrates two functionality

	Use of host processor’s file system by remote processor

	remote processor’s standard IO redirection to host processor’s standard IO

case 1: This app allows remote processor to use file system of host processor. Host
processor file system acts as proxy of remote file system. Remote processor
can use open, read, write, close calls to interact with files on host
processor.

File “remote.file” is available after app exits on host side that is created by
remote processor that contains string “This is a test string being written to
file..” written by remote firmware. This demonstrates remote firmware can
create and write files on host side.

case 2: This application also demonstrates redirection of standard IO.
Remote processor can use host processor’s stdin and stdout via proxy service
that is implemented on host side. This is achieved with open-amp proxy
service implemented here: rpmsg_retarget.c [https://github.com/OpenAMP/open-amp/blob/main/lib/proxy/rpmsg_retarget.c]
Remote side firmware uses two types of output functions to print message on
console 1) xil_printf i.e. using same UART console as of APU and 2) Standard
“printf” function that is re-directed to standard output of Host. Both function
uses different ways to output messages, but using same console.

This is interactive demo:

	When the remote application prompts you to Enter name, enter any string without space.

	When the remote application prompts you to Enter age , enter any integer.

	When the remote application prompts you to Enter value for pi, enter any floating
point number.
After this, remote application will print all the inputs entered by user on console
of host processor.

Remote firmware’s standard IO are redirected to host processor’s standard IO.
So, when remote uses “printf” and “scanf” functions actually host processor’s
console is used for printing output and scanning inputs. Host communicates with
remote via rpmsg_char driver and Remote communicates to Host via redirected
Standard IO.

Platform: Xilinx Zynq UltraScale+ MPSoC(a.k.a ZynqMP)

Board: ZynqMP Zcu102

Remote Processor firmware (image_rpc_demo)

	Remote processor firmware for Xilinx ZynqMP cortex-r5 platform based on: rpc_demo.c [https://github.com/OpenAMP/open-amp/blob/main/apps/examples/rpc_demo/rpc_demo.c]

	Instructions to compile: ZynqMP r5f generic baremetal [https://github.com/OpenAMP/open-amp/blob/main/README.md#example-to-compile-zynq-ultrascale-mpsoc-r5-genericbaremetal-remote]

	RPU firmware elf file is expected in sdk at path: /lib/firmware/

	Xilinx Vendor specific SDK is required to build RPU firmware: Xilinx Petalinux [https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html]

	More information is provided here: Xilinx Wiki page for OpenAMP [https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841718/OpenAMP]

Run the demo

Assume all the binaries are zcu102 board specific.

Specify remote processor firmware to be loaded.
echo image_rpc_demo > /sys/class/remoteproc/remoteproc0/firmware

Load and start target Firmware onto remote processor.
echo start > /sys/class/remoteproc/remoteproc0/state

load rpmsg_char driver
modprobe rpmsg_char

load rpmsg_ctrl driver
modprobe rpmsg_ctrl

Run proxy application.
proxy_app

unload rpmsg_ctrl driver
modprobe -r rpmsg_ctrl

#unload rpmsg_char driver
modprobe -r rpmsg_char

Stop target firmware
echo stop > /sys/class/remoteproc/remoteproc0/state

 System Reference Samples and Demos on STM32MP157C/F-DK2 board

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

System Reference Samples and Demos on STM32MP157C/F-DK2 board

Based on a fork of the yocto [meta-st-stm32mp-oss](https://github.com/STMicroelectronics/meta-st-stm32mp-oss) environment, designed to update and test upstream code on STM32MP boards,

Prerequisite

Some specifics package could be needed to build the ST images. For details refer to

STMPU wiki PC prerequisite [https://wiki.st.com/stm32mpu/wiki/PC_prerequisites]

Installation

Create the structure of the project

mkdir stm32mp15-demo
cd stm32mp15-demo
mkdir stm32mp1_distrib_oss
mkdir zephy_rpmsg_multi_services

At this step you should see following folder hierarchy:

stm32mp15-demo
 |___ stm32mp1_distrib_oss
 |___ zephy_rpmsg_multi_services

Generate the stm32mp15 image

Install stm32mp1_distrib_oss kirkstone

From the stm32mp15-demo directory

cd stm32mp1_distrib_oss

mkdir -p layers/meta-st
git clone https://github.com/openembedded/openembedded-core.git layers/openembedded-core
cd layers/openembedded-core
git checkout -b WORKING origin/kirkstone
cd -

git clone https://github.com/openembedded/bitbake.git layers/openembedded-core/bitbake
cd layers/openembedded-core/bitbake
git checkout -b WORKING origin/2.0
cd -

git clone https://github.com/openembedded/meta-openembedded.git layers/meta-openembedded
cd layers/meta-openembedded
git checkout -b WORKING origin/kirkstone
cd -

git clone https://github.com/STMicroelectronics/meta-st-stm32mp-oss.git layers/meta-st/meta-st-stm32mp-oss
cd layers/meta-st/meta-st-stm32mp-oss
git checkout -b WORKING origin/kirkstone
cd -

Initialize the Open Embedded build environment

The OpenEmbedded environment setup script must be run once in each new working terminal in which you use the BitBake or devtool tools (see later) from stm32mp15-demo/stm32mp1_distrib_oss directory

source ./layers/openembedded-core/oe-init-build-env build-stm32mp15-disco-oss

bitbake-layers add-layer ../layers/meta-openembedded/meta-oe
bitbake-layers add-layer ../layers/meta-openembedded/meta-perl
bitbake-layers add-layer ../layers/meta-openembedded/meta-python
bitbake-layers add-layer ../layers/meta-st/meta-st-stm32mp-oss

echo "MACHINE = \"stm32mp15-disco-oss\"" >> conf/local.conf
echo "DISTRO = \"nodistro\"" >> conf/local.conf
echo "PACKAGE_CLASSES = \"package_deb\" " >> conf/local.conf

Build stm32mp1_distrib_oss image

From stm32mp15-demo/stm32mp1_distrib_oss/build-stm32mp15-disco-oss/ directory

bitbake core-image-base

Note that

	to build around 30 GB is needed

	building the distribution can take more than 2 hours depending on performance of the PC.

Install stm32mp1_distrib_oss

From ‘stm32mp15-demo/stm32mp1_distrib_oss/build-stm32mp15-disco-oss/’ directory,populate your microSD card inserted on your HOST PC using command

cd tmp-glibc/deploy/images/stm32mp15-disco-oss/
flash wic image on your sdcar. replace <device> by mmcblk<X> (X = 0,1..) or sd<Y> (Y = b,c,d,..) depending on the connection
dd if=core-image-base-stm32mp15-disco-oss.wic of=/dev/<device> bs=8M conv=fdatasync

Generate the Zephyr rpmsg multi service example

Prerequisite

Please refer to the Getting Started Guide [https://docs.zephyrproject.org/latest/develop/getting_started/index.html]
zephyr documentation

Initialize the Zephyr environment

cd zephy_rpmsg_multi_services
git clone https://github.com/OpenAMP/openamp-system-reference.git
west init
west update

Build the Zephyr image

From the zephy_rpmsg_multi_services directory

west build -b stm32mp157c_dk2 openamp-system-reference/examples/zephyr/rpmsg_multi_services

Install the Zephyr binary on the sdcard

The Zephyr sample binary is available in the sub-folder of build directory stm32mp15-demo/zephy_rpmsg_multi_services/build/zephyr/rpmsg_multi_services.elf. It needs to be installed on the “rootfs” partition of the sdcard

sudo cp build/zephyr/rpmsg_multi_services.elf <mountpoint>/rootfs/lib/firmware/

Don’t forget to properly unmoumt the sdcard partitions.

Demos

Start the demo environment

	power on the stm32mp157C/F-dk2 board [https://wiki.st.com/stm32mpu/nsfr_img_auth.php/thumb/8/82/STM32MP157C-DK2_with_power_stlink_flasher_ethernet.png/600px-STM32MP157C-DK2_with_power_stlink_flasher_ethernet.png], and wait login prompt on your serial terminal

stm32mp15-disco-oss login: root

There are 2 ways to start the coprocessor:

	During the runtime, by the Linux remoteproc framework

root@stm32mp15-disco-oss:~# cat /sys/class/remoteproc/remoteproc0/state
offline
root@stm32mp15-disco-oss:~# echo rpmsg_multi_services.elf > /sys/class/remoteproc/remoteproc0/firmware
root@stm32mp15-disco-oss:~# echo start >/sys/class/remoteproc/remoteproc0/state
root@stm32mp15-disco-oss:~# cat /sys/class/remoteproc/remoteproc0/state
running

	In the boot stages, by the U-Boot remoteproc framework

	Prerequisite
Copy the firmware in the bootfs partition

root@stm32mp15-disco-oss:~# cp /lib/firmware/rpmsg_multi_services.elf /boot/
root@stm32mp15-disco-oss:~# sync

	Boot the board and go in U-Boot console

root@stm32mp15-disco-oss:~# reboot

Enter in the U-boot console by interrupting the boot with any keyboard key.

STM32MP>

	Load and start the Coprocessor firmware:

STM32MP> load mmc 0#bootfs ${kernel_addr_r} rpmsg_multi_services.elf
816776 bytes read in 148 ms (5.3 MiB/s)
STM32MP> rproc init
STM32MP> rproc load 0 ${kernel_addr_r} ${filesize}
Load Remote Processor 0 with data@addr=0xc2000000 816776 bytes: Success!
STM32MP> rproc start 0
STM32MP> run bootcmd

To automatically load the firmware by U-Boot, refer to the
STMicorelectronics wiki [https://wiki.st.com/stm32mpu/wiki/How_to_start_the_coprocessor_from_the_bootloader]

	Check that the remoteproc state is “detached”

root@stm32mp15-disco-oss:~# cat /sys/class/remoteproc/remoteproc0/state
detached

	Attach the Linux remoteproc framework to the Zephyr

root@stm32mp15-disco-oss:~# echo start >/sys/class/remoteproc/remoteproc0/state
root@stm32mp15-disco-oss:~# cat /sys/class/remoteproc/remoteproc0/state
attached

The communication with the Coprocessor is not initilaized, following traces on console
are observed:

root@stm32mp15-disco-oss:~#
[54.495343] virtio_rpmsg_bus virtio0: rpmsg host is online
[54.500044] virtio_rpmsg_bus virtio0: creating channel rpmsg-client-sample addr 0x400
[54.507923] virtio_rpmsg_bus virtio0: creating channel rpmsg-tty addr 0x401
[54.514795] virtio_rpmsg_bus virtio0: creating channel rpmsg-raw addr 0x402
[54.548954] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: new channel: 0x402 -> 0x400!
[54.557337] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: incoming msg 1 (src: 0x400)
[54.565532] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: incoming msg 2 (src: 0x400)
[54.581090] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: incoming msg 3 (src: 0x400)
[54.588699] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: incoming msg 4 (src: 0x400)
[54.599424] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: incoming msg 5 (src: 0x400)
...

This informs that following rpmsg channels devices have been created:

	a rpmsg-client-sample device

	a rpmsg-tty device

	a rpmsg-raw device

Run the multi RPMsg services demo

	OpenAMP multi services sample Application using resource table
	Overview

	Building the application

	Running the sample

 OpenAMP multi services sample Application using resource table

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

OpenAMP multi services sample Application using resource table

Overview

This application demonstrates how to use OpenAMP with Zephyr based on a resource
table. It is designed to respond to the:

	Linux rpmsg client sample [https://elixir.bootlin.com/linux/latest/source/samples/rpmsg/rpmsg_client_sample.c]

	Linux rpmsg tty driver [https://elixir.bootlin.com/linux/latest/source/drivers/tty/rpmsg_tty.c]

	Linux rpmsg char driver [https://elixir.bootlin.com/linux/latest/source/drivers/rpmsg/rpmsg_char.c]

This sample implementation is compatible with platforms that embed
a Linux kernel OS on the main processor and a Zephyr application on
the co-processor.

Tested on board:

	Lstm32mp157C_dk2 [https://docs.zephyrproject.org/latest/boards/arm/stm32mp157c_dk2/doc/stm32mp157_dk2.html]

	Lstm32mp157F_dk2 [https://docs.zephyrproject.org/latest/boards/arm/stm32mp157c_dk2/doc/stm32mp157_dk2.html]

Building the application

Zephyr

west build -b <target board> openamp-system-reference/examples/zephyr/rpmsg_multi_services

Linux

Enable:

	the SAMPLE_RPMSG_CLIENT configuration to build and install
the rpmsg_client_sample.ko module on the target,

	the RPMSG_TTY configuration to build and install the
rpmsg_tty.ko module on the target

	the RPMSG_CHAR configuration to build and install the
rpmsg_char.ko module on the target

	build and install the
rpmsg-utils [https://github.com/OpenAMP/openamp-system-reference/tree/main/examples/linux/rpmsg-utils]
binaries

Running the sample

Zephyr console

Open a serial terminal (minicom, putty, etc.) and connect the board with the
following settings:

	Speed: 115200

	Data: 8 bits

	Parity: None

	Stop bits: 1

Reset the board.

Linux console

Open a Linux shell (minicom, ssh, etc.)

	Insert a module into the Linux Kernel:

root@linuxshell: insmod rpmsg_client_sample.ko rpmsg_tty.ko rpmsg_char.ko rpmsg_ctrl.ko

	Start the demo environment

First copy the rpmsg_multi_services.elf file on the target rrottfs in /lib/firmware folder.
Then start the firmware:

root@linuxshell: echo rpmsg_multi_services.elf > /sys/class/remoteproc/remoteproc0/firmware
root@linuxshell: echo start >/sys/class/remoteproc/remoteproc0/state

Result on Zephyr console on boot

The following messages will appear on the corresponding Zephyr console

[54.495343] virtio_rpmsg_bus virtio0: rpmsg host is online
[54.500044] virtio_rpmsg_bus virtio0: creating channel rpmsg-client-sample addr 0x400
[54.507923] virtio_rpmsg_bus virtio0: creating channel rpmsg-tty addr 0x401
[54.514795] virtio_rpmsg_bus virtio0: creating channel rpmsg-raw addr 0x402
[54.548954] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: new channel: 0x402 -> 0x400!
[54.557337] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: incoming msg 1 (src: 0x400)
[54.565532] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: incoming msg 2 (src: 0x400)
[54.581090] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: incoming msg 3 (src: 0x400)
[54.588699] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: incoming msg 4 (src: 0x400)
[54.599424] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: incoming msg 5 (src: 0x400)
...

This inform that following rpmsg channels devices have been created:

	a rpmsg-client-sample device

root@linuxshell: dmesg
...
[54.500044] virtio_rpmsg_bus virtio0: creating channel rpmsg-client-sample addr 0x400
...

	a rpmsg-tty device

root@linuxshell: ls /dev/ttyRPMSG*
/dev/ttyRPMSG0

	a rpmsg-raw device

root@linuxshell: ls /dev/rpmsg?
/dev/rpmsg0

The following messages will appear on the corresponding Zephyr console or
in the remoteproc trace buffer depending on the Hardware.

root@linuxshell: cat /sys/kernel/debug/remoteproc/remoteproc0/trace0
*** Booting Zephyr OS build zephyr-v3.2.0-1-g6b49008b6b83 ***
Starting application threads!

OpenAMP[remote] linux responder demo started

OpenAMP[remote] Linux sample client responder started

OpenAMP[remote] Linux tty responder started

OpenAMP[remote] Linux raw data responder started

OpenAMP[remote] create a endpoint with address and dest_address set to 0x1
OpenAMP Linux sample client responder ended

Demo 1: rpmsg-client-sample device

Principle

This demo is automatically run when the co-processor firmware is started. It confirms that the rpmsg
and virtio protocols are working properly. The Zephyr requests the creation of the
rpmsg-client-sample channel to the Linux rpmsg framework using the “name service announcement”
rpmsg. On message reception the Linux rpmsg bus creates an associated device and probes the
rpmsg-client-sample driver. The Linux rpmsg-client-sample driver sent 100 messages to the remote
processor, which answers to each message. After answering to each rpmsgs the Zephyr destroys the
channel.

Associated traces

[54.548954] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: new channel: 0x402 -> 0x400!
[54.557337] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: incoming msg 1 (src: 0x400)
[54.565532] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: incoming msg 2 (src: 0x400)

 ...

[55.436401] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: incoming msg 99 (src: 0x400)
[55.445343] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: incoming msg 100 (src: 0x400)
[55.454280] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: goodbye!
[55.461424] virtio_rpmsg_bus virtio0: destroying channel rpmsg-client-sample addr 0x400
[55.469707] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1024: rpmsg sample client driver is removed

Demo 2: rpmsg-tty device

Principle

This channel allows to create a /dev/ttyRPMSGx for terminal based communication with Zephyr.

Demo

	Check presence of the /dev/ttyRPMSG0

By default the Zephyr has created a rpmsg-tty channel

[54.507923] virtio_rpmsg_bus virtio0: creating channel rpmsg-tty addr 0x401
root@linuxshell: ls /dev/ttyRPMSG*
/dev/ttyRPMSG0

	Send and receive messages on /dev/ttyRPMSG0

The zephyr is programmed to resent received messages with a prefixed “TTY 0: “, 0 is the instance of
the tty link

root@linuxshell: cat /dev/ttyRPMSG0 &
root@linuxshell: echo "Hello Zephyr" >/dev/ttyRPMSG0
TTY 0: Hello Zephyr
root@linuxshell: echo "Goodbye Zephyr" >/dev/ttyRPMSG0
TTY 0: Goodbye Zephyr

Demo 3: dynamic creation/release of a rpmsg-tty device

Principle

This demo is based on the rpmsg_char restructuring series not yet upstreamed. This series
de-correlates the /dev/rpmsg_ctrl from the rpmsg_char device and then introduces 2 new rpmsg IOCtrls:

	RPMSG_CREATE_DEV_IOCTL : to create a local rpmsg device and to send a name service creation
announcement to the remote processor

	RPMSG_RELEASE_DEV_IOCTL: release the local rpmsg device and to send a name service destroy
announcement to the remote processor

Demo

	Prerequisite

Due to a limitation in the rpmsg protocol, the zephyr does not know the existence of the
/dev/ttyRPMG0 until the Linux sends it a first message. Creating a new channel before this first one
is well establish leads to bad endpoints association. To avoid this, just send a message on
/dev/ttyRPMSG0

root@linuxshell: cat /dev/ttyRPMSG0 &
root@linuxshell: echo "Hello Zephyr" >/dev/ttyRPMSG0
TTY 0: Hello Zephyr

Download rpmsg-utils [https://github.com/OpenAMP/openamp-system-reference/tree/main/examples/linux/rpmsg-utils]
tools relying on the /dev/rpmsg_ctrl, and compile it in an arm environment
using make instruction and install it on target.

optional: enable rpmsg bus trace to observe RPmsg in kernel trace:

root@linuxshell: echo -n 'file virtio_rpmsg_bus.c +p' > /sys/kernel/debug/dynamic_debug/control

	create a new TTY channel

Create a rpmsg-tty channel from Linux with local address set to 257 and undefined remote address -1.

Note

Current Linux implementation has a limitation. When it initiates a name service announcement,
It is not able to associate the remote endpoint to the created channel.
Following patch has to be applied on top waiting a upstreamed solution:

<https://lore.kernel.org/lkml/20220316153001.662422-1-arnaud.pouliquen@foss.st.com/>

root@linuxshell: ./rpmsg_export_dev /dev/rpmsg_ctrl0 rpmsg-tty 257 -1

The /dev/ttyRPMSG1 is created

root@linuxshell: ls /dev/ttyRPMSG*
/dev/ttyRPMSG0 /dev/ttyRPMSG1

A name service announcement has been sent to Zephyr, which has created a local endpoint (@ 0x400),
and sent a “bound” message to the /dev/ttyRPMG1 (@ 257)

root@linuxshell: dmesg
[115.757439] rpmsg_tty virtio0.rpmsg-tty.257.-1: TX From 0x101, To 0x35, Len 40, Flags 0, Reserved 0
[115.757497] rpmsg_virtio TX: 01 01 00 00 35 00 00 00 00 00 00 00 28 00 00 00 5.......(...
[115.757514] rpmsg_virtio TX: 72 70 6d 73 67 2d 74 74 79 00 00 00 00 00 00 00 rpmsg-tty.......
[115.757528] rpmsg_virtio TX: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[115.757540] rpmsg_virtio TX: 01 01 00 00 00 00 00 00
[115.757568] remoteproc remoteproc0: kicking vq index: 1
[115.757590] stm32-ipcc 4c001000.mailbox: stm32_ipcc_send_data: chan:1
[115.757850] stm32-ipcc 4c001000.mailbox: stm32_ipcc_tx_irq: chan:1 tx
[115.757906] stm32-ipcc 4c001000.mailbox: stm32_ipcc_rx_irq: chan:0 rx
[115.757969] remoteproc remoteproc0: vq index 0 is interrupted
[115.757994] virtio_rpmsg_bus virtio0: From: 0x400, To: 0x101, Len: 6, Flags: 0, Reserved: 0
[115.758022] rpmsg_virtio RX: 00 04 00 00 01 01 00 00 00 00 00 00 06 00 00 00
[115.758035] rpmsg_virtio RX: 62 6f 75 6e 64 00 bound.
[115.758077] virtio_rpmsg_bus virtio0: Received 1 messages

	Play with /dev/ttyRPMSG0 and /dev/ttyRPMSG1

root@linuxshell: cat /dev/ttyRPMSG0 &
root@linuxshell: cat /dev/ttyRPMSG1 &
root@linuxshell: echo hello dev0 >/dev/ttyRPMSG0
TTY 0: hello dev0
root@linuxshell: echo hello dev1 >/dev/ttyRPMSG1
TTY 1: hello dev1

	Destroy RPMSG TTY devices

Destroy the /dev/ttyRPMSG1

root@linuxshell: ./rpmsg_export_dev /dev/rpmsg_ctrl0 -d rpmsg-tty 257 -1

Destroy the /dev/ttyRPMSG0
* Get the source address

root@linuxshell: cat /sys/bus/rpmsg/devices/virtio0.rpmsg-tty.-1.*/src
0x402

	Destroy the /dev/ttyRPMSG0 specifying the address 1026 (0x402)

root@linuxshell: ./rpmsg_export_dev /dev/rpmsg_ctrl0 -d rpmsg-tty 1026 -1

The /dev/ttyRPMGx devices no more exists

Demo 4: rpmsg-char device

Principle

This channel allows to create a /dev/rpmsgX for character device based communication with Zephyr.

Demo

	Prerequisite

Download rpmsg-utils tools relying on the /dev/rpmsg_ctrl, an compile it in an arm environment
using make instruction and install it on target

optional: enable rpmsg bus trace to observe rp messages in kernel trace:

echo -n 'file virtio_rpmsg_bus.c +p' > /sys/kernel/debug/dynamic_debug/control

	Check presence of the /dev/rpmsg0

By default the Zephyr has created a rpmsg-raw channel

[54.514795] virtio_rpmsg_bus virtio0: creating channel rpmsg-raw addr 0x402

	Check device exists

root@linuxshell: ls /dev/rpmsg?
/dev/rpmsg0

	Send and receive messages on /dev/rpmsg0

The zephyr is programmed to resent received message with a prefixed “from ept 0x0402: “, 0x0402 is
the zephyr endpoint address

root@linuxshell: ./rpmsg_ping /dev/rpmsg0
message for /dev/rpmsg0: "from ept 0x0402: ping /dev/rpmsg0"

Demo 5: Multi endpoints demo using rpmsg-ctrl device

Principle

Use the rpmsg_ctrl RPMSG_CREATE_EPT_IOCTL IoCtrl to instantiate endpoints on Linux side. Theses
endpoints will not be associated to a channel but will communicate with a predefined remote proc
endpoint. For each endpoint created, a /dev/rpmsg sysfs interface will be created On Zephyr side, an
endpoint with a prefixed address 0x1 has been created. When it receives a message it re-sends a the
message to the Linux sender endpoint, prefixed by “from ept 0x0001:”

Demo

	Prerequisite

Download rpmsg-util tools relying on the /dev/rpmsg_ctrl, an compile it in an arm environment
using make instruction and install it on target

optional: enable rpmsg bus trace to observe rp messages in kernel trace:

echo -n 'file virtio_rpmsg_bus.c +p' > /sys/kernel/debug/dynamic_debug/control

	Check presence of the /dev/rpmsg0

By default the Zephyr has created a rpmsg-raw channel

[54.514795] virtio_rpmsg_bus virtio0: creating channel rpmsg-raw addr 0x402

	Check device exists

root@linuxshell: ls /dev/rpmsg*
/dev/rpmsg0 /dev/rpmsg_ctrl0

	Create 3 new endpoints

root@linuxshell: ./rpmsg_export_ept /dev/rpmsg_ctrl0 my_endpoint1 100 1
root@linuxshell: ./rpmsg_export_ept /dev/rpmsg_ctrl0 my_endpoint2 101 1
root@linuxshell: ./rpmsg_export_ept /dev/rpmsg_ctrl0 my_endpoint2 103 1
root@linuxshell: ls /dev/rpmsg?
/dev/rpmsg0 /dev/rpmsg1 /dev/rpmsg2 /dev/rpmsg3

	Test them

root@linuxshell: ./rpmsg_ping /dev/rpmsg0
message for /dev/rpmsg0: "from ept 0x0402: ping /dev/rpmsg0"
root@linuxshell: ./rpmsg_ping /dev/rpmsg1
message for /dev/rpmsg1: "from ept 0x0001: ping /dev/rpmsg1"
root@linuxshell: ./rpmsg_ping /dev/rpmsg2
message for /dev/rpmsg2: "from ept 0x0001: ping /dev/rpmsg2"
root@linuxshell: ./rpmsg_ping /dev/rpmsg3
message for /dev/rpmsg3: "from ept 0x0001: ping /dev/rpmsg3"

	Destroy them

root@linuxshell: ./rpmsg_destroy_ept /dev/rpmsg1
root@linuxshell: ./rpmsg_destroy_ept /dev/rpmsg2
root@linuxshell: ./rpmsg_destroy_ept /dev/rpmsg3
root@linuxshell: ls /dev/rpmsg?
/dev/rpmsg0

 linux_rpc_demo

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

linux_rpc_demo

This readme is about the OpenAMP linux_rpc_demo.

The linux_rpc_demo is about remote procedure calls between linux host and linux
remote using rpmsg to perform

	File operations such as open, read, write and close

	I/O operation such as printf, scanf

Compilation

Linux Compilation

	Install libsysfs devel and libhugetlbfs devel packages on your Linux.

	build libmetal library:

 $ mkdir -p build-libmetal
 $ cd build-libmetal
 $ cmake <libmetal_source>
 $ make VERBOSE=1 DESTDIR=<libmetal_install> install

	build OpenAMP library:

 $ mkdir -p build-openamp
 $ cd build-openamp
 $ cmake <openamp_source> -DCMAKE_INCLUDE_PATH=<libmetal_built_include_dir> \
 -DCMAKE_LIBRARY_PATH=<libmetal_built_lib_dir> -DWITH_APPS=ON -DWITH_PROXY=ON
 $ make VERBOSE=1 DESTDIR=$(pwd) install

The OpenAMP library will be generated to build/usr/local/lib directory, headers will be
generated to build/usr/local/include directory, and the applications executable will be
generated to build/usr/local/bin directory.

	cmake option -DWITH_APPS=ON is to build the demonstration applications.

	cmake option -DWITH_PROXY=ON to build the linux rpc app.

Run the Demo

linux_rpc_demo:

	Start rpc demo server on one console

$ sudo LD_LIBRARY_PATH=<openamp_built>/usr/local/lib:<libmetal_built>/usr/local/lib \
 build-openamp/usr/local/bin/linux_rpc_demod-shared

	Run rpc demo client on another console to perform file and I/O operations on the server

$ sudo LD_LIBRARY_PATH=<openamp_built>/usr/local/lib:<libmetal_built>/usr/local/lib \
 build-openamp/usr/local/bin/linux_rpc_demo-shared 1

Enter the inputs on the host side the same gets printed on the remote side. You will see communication between the host and remote process using rpmsg calls.

Note:

sudo is required to run the OpenAMP demos between Linux processes, as it doesn’t work on
some systems if you are normal users.

 OpenAMP Demo Docker images

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

OpenAMP Demo Docker images

The OpenAMP project maintains the following docker images to demonstrate
the project. In the future docker images for use with CI will also be provided.
At this time the following images are provided:

Docker images

	Name

	Description

	openamp/demo-lite

	Just enough to run the openamp QEMU demos and lopper CLI demo

	openamp/demo

	Placeholder for image to build and run the above demos

Docker setup

You will need docker on your machine. A docker install from your Linux
distribution or from the official docker project should work fine.

Warning

Arm64 host machines (like a MacBook with Apple Silicon instead of x86) are
not tested at this time. Binary translation may or may not work.
An aarch64 docker image will be provided in the future.

Some quick start information is given below but also checkout the
docker cheat-sheet at the end of this document.

Docker quick start for Ubuntu

Example for Ubuntu 20.04 or 22.04:

$ sudo apt update; sudo apt install docker.io; sudo adduser $USER docker

Then logout and log back in in order to get the new group.
You can check your groups with the command:

$ groups

Warning

If you cannot add yourself to the docker group, you can run docker with sudo
but doing so with any docker image is not recommended based on general
security best practice. There is nothing in the openamp images that should
make them more dangerous than other images.

Your life will be easier if you are not behind a corporate firewall.
However if you can pull the docker image you should be able to run the demos
as they are self contained. Some of the other activities described like
installing new packages etc may not work without additional effort.
If needed, please checkout this tutorial [https://www.serverlab.ca/tutorials/containers/docker/how-to-set-the-proxy-for-docker-on-ubuntu/]

Docker for other host systems

There are a ton of tutorials for installing and using docker on the web.
Some good ones include:

	Official docker documentation [https://docs.docker.com/desktop/]

	Digital Ocean tutorial [https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-20-04]

Start the container

you@your-machine:~$ docker run -it openamp/demo-lite

This will pull the openamp/demo-lite image to your machine if it is not already
there. If it is there it will be used without checking if it is the latest.

It will then create and start a container based on this image and attach to it.

You will now be at a command prompt inside the container.
As part of logging you in, some guidance will be printed on how to run the demos.

Welcome to the OpenAMP demo (lite version)
You can run the demos by using
 $ qemu-zcu102 demo1
Where demo1 is any of demo1 demo2 demo3 or demo4
You can also run the lopper demo like
 $./demo5/demo5

Enjoy!
dev@openamp-demo:~$

Run the QEMU based demos

To run demo1, use the following command:

dev@openamp-demo:~$ qemu-zcu102 demo1

This will:

	
	Build a custom cpio file for the tftp/zcu102 directory
	
	This cpio will contain the contents of the base cpio file plus the contents of the my-extra-stuff directory

	This is done every boot so changes to the my-extra-stuff directory will be used on the next boot

	
	Start tmux and create multiple panes
	
	The main QEMU pane with the main UART

	A “host” pane for container level commands

	Two additional UART panes

	
	QEMU will:
	
	Emulate the four A53 CPUs and the two R5 CPUs

	In a separate QEMU process, emulate the microblaze based PDU

	
	The A53s (in main QEMU pane) will:
	
	Run TrustedFirmware-A, and U-Boot

	U-boot will autoboot from TFTP (provided by by QEMU from the tftp directory)

	Load and run the kernel, dtb, and cpio based initramfs

	present a login prompt

	The container shell pane will present a container prompt

	
	The 2nd and 3rd UART panes will
	
	wait for QEMU to start

	connect to the other UARTs of the emulated SOC

	The 2nd UART is not used by demo 1 & 2 but is used by demo 3 & 4

	The 3rd UART is not currently used

Let the SOC autoboot (don’t stop at the U-boot count down) and then login as
directed (user is root with no password).
If you don’t see the login prompt hit enter to get a fresh prompt.
At SOC login, instructions will be printed for running the current demo.

Poky (Yocto Project Reference Distro) 4.0 generic-arm64 /dev/ttyPS0

(Login as root with no password)
generic-arm64 login: root
This is demo1, rpmsg examples on R5 lockstep
There are 3 sub-demos here: demo1A demo1B and demo1C
Look at them
$ cat demo1A
or just run them
$./demo1A

root@generic-arm64:~#

Demo1 contains 3 sub-demos, demo1A, demo1B and demo1C.
You should look at each before running it:

root@generic-arm64:~# cat ./demo1A
#!/bin/sh

R5_0=/sys/class/remoteproc/remoteproc0

echo "Make sure the R5 is not running"
echo stop >$R5_0/state 2>/dev/null

echo "Set the firmware to use"
echo image_echo_test_zcu102 >$R5_0/firmware

echo "Start the R5"
echo start >$R5_0/state

echo "Now run the echo test Linux application"
echo_test

and then run it:

root@generic-arm64:~# ./demo1A
Make sure the R5 is not running
Set the firmware to use
Start the R5
[809.815718] remoteproc remoteproc0: powering up ff9a0000.rf5ss:r5f_0
[809.818340] remoteproc remoteproc0: Booting fw image image_echo_test_zcu102, size 610856
main():98[op 8enamp l09.833571ib v] remotersion: eproc0#v1.dev0buffe1.0 (r: registered virtio0 (type 7)
main():99 Major: 1, main():100 Minor: 1, main():101 Patch: 0)
[809.833965] remoteproc remmain()ote:103 libmetal libpro version: c0: 1.1.remot0 (e processor ff9maina0000.rf5s():104 Major: 1, s:r5f_0 mais innow up
():105 Minor: 1, main():106 Patch: 0)
main():108 Starting application...
0 L7 registered generic bus

[snip]

sending payload number 470 of size 487
echo test: sent : 487
received payload number 470 of size 487

sending payload number 471 of size 488
echo test: sent : 488
received payload number 471 of size 488

Echo Test Round 0 Test Results: Error count = 0

18 L6 rpmsg_endpoint_cb():36 shutdown message is received.
19 L7 app():82 done
[814.610677] virtio_rpmsg_bus virtio0: 20 L6 main():129 Stopdestroyiping ang channelpp rlication.pm..
sg-openamp-demo-channel addr 0x400
21 L7 unregistered generic bus

Do the same for demo1B and demo1C.

To exit QEMU do either one of these:

	In QEMU pane, hit Ctrl-A and then x

	Click the “host” shell pane and type the exit command

Now do the same for demo2, demo3, and demo4.
These demos do not have sub-demos so contain a single demo script.

Run the Lopper CLI demo

The Lopper demo is fairly standalone but the container already has the
needed requirements and the and the git repository has already been cloned with
the correct branch. Additionally, scripts have been written to cut down the
typing or cut-and-paste required.

To run this demo use:

dev@openamp-demo:~$./demo5/demo5

The script will first give the URL of the README file. You should open this URL
in a browser and follow along.

The script will then step you through the commands in the README and let you
view the various files. At the end you can look at all the files in the
~/demo5/lopper/demos/openamp directory.

Exit and clean-up the docker container

When at the docker container prompt, the exit command will stop the container
and return you to your machine’s prompt.

dev@openamp-demo:~$ exit
you@your-machine:~$

Now the container is not running but still exists. To check and delete it do:

you@your-machine:~$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
nnnnnnnnnnnn openamp/demo-lite "/bin/sh -c 'su -l d…" 2 hours ago Exited (0) 36 seconds ago random_name
nnnn openamp/demo-lite "bash" Exited (0) 2 minutes ago random_name
dev@openamp-demo:~$ docker rm random_name

Note

You can use tab completion to fill in the random name assigned to
the container

The reusable docker image still exists on your machine.
To see the images and delete the the openamp ones, you can do:

you@your-machine:~$ docker image list
openamp/demo-lite latest 6ee85d920453 24 hours ago 837MB
you@your-machine:~$ docker image rm openamp/demo-lite

qemu-zcu102 tips and tricks

Some help is available with qemu-zcu102 help but it is not yet complete.

tmux mouse mode is turned on. You can:

	click in a pane to give it focus

	hold the right mouse button to show a menu (zoom and un-zoom are useful)

	the mouse scroll wheel will scroll the pane, use q to exit this mode

	if you don’t need the 2nd or 3rd UART pane, you can kill them with the right button menu

	you can drag the pane borders to resize the panes

	you can kill the container host pane w/o stopping QEMU

The container host pane can be used with ssh to connect with the
emulated SOC or with scp to transfer files.
SSH configuration is already setup for the name qemu-zcu102.

From the container host pane:

dev@openamp$ ssh qemu-zcu102
root@generic-arm64:~# exit
dev@openamp$ date >date.txt; scp date.txt qemu-zcu102:
dev@openamp$ ssh qemu-zcu102 cat date.txt

You can manually send output to the 2nd UART like so:

root@generic-arm64:~# echo “Hello there” >/dev/ttyPS1

Docker cheat-sheet

First some tips specific to the openamp demo containers

The container is based on the standard Ubuntu 20.04 docker image.
Like the Ubuntu standard images it is minimized (no man pages etc).
However bash completion has been added.

There is no init system running (no systemd, no sysvinit) so no daemons are
running. You cannot ssh into the container nor use scp between your host and
the container. You can use docker cp and docker attach in
a fashion similar to scp and ssh respectively.

You have no password required sudo access as the dev user. You can update
and install packages if you wish.

All of the below are standard docker usage but may be helpful to people less
familiar with docker.

You can add --rm to the docker run command to automatically delete the
container when you exit.
You cannot change your mind while running the container so do this only if
you are sure you do not want to reuse the changes you made in the container.
This will not delete the image, just the container.

To restart and reattach to a container that is stopped, do this
(tab completion will help with the random name):

you@your-machine:~$ docker start random_name
you@your-machine:~$ docker attach random_name

To detach from a container without stopping it, you can use Ctrl-p Ctrl-q.
To reattach use the attach command as show above.

docker ps will show all running containers and docker ps -a will
show all containers running or stopped

 Hypervisorless virtio binary demo (openamp/demo-lite)

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Hypervisorless virtio binary demo (openamp/demo-lite)

A binary-only version of the hypervisorless virtio setup can be used in a containerized deployment based on the openamp/demo-lite image from Docker Hub.

you@your-machine:~$ docker run -it openamp/demo-lite
dev@openamp-demo:~$ qemu-zcu102 ./demo4

Let U-boot autoboot, don’t stop it. U-boot will tftp load uEnv.txt which will tftp load the kernel, dtb, and cpio. Use root as user to login to the A53 terminal.

You can run ./demo4 or cat demo4 and follow the commands.

When the Physical Machine Monitor starts, you will see an output similar to

/hvl/lkvm run --debug --vxworks --rsld --pmm --debug-nohostfs --transport mmio --shmem-addr 0x37000000 --shmem-size 0x1000000 --cpus 1 --mem 128 --no-dtb --debug --rng --network mode=tap,tapif=tap0,trans=mmio --vproxy
 Info: (virtio/mmio.c) virtio_mmio_init:620: virtio-mmio.devices=0x200@0x37000000 [0x4d564b4c:0x4]
[48.008155] IPv6: ADDRCONF(NETDEV_CHANGE): tap0: link becomes ready
 Info: (virtio/mmio.c) virtio_mmio_init:620: virtio-mmio.devices=0x200@0x37000200 [0x4d564b4c:0x1]

You can see the results of the entropy test in the Zephyr console in the 2nd UART and interact with the system using shell commands.

E.g. Show the network interface configuration on Zephyr and ping the back-end (PetaLinux) runtime.

uart:~$ device list
devices:
- sys_clock (READY)
- UART_1 (READY)
- rpu_0_ipi (READY)
- virtio1 (READY)
- virtio0 (READY)
- virt-rng (READY)
 requires: virtio0
- virt-net (READY)
 requires: virtio1
uart:~$ net iface

Interface 0x78109a70 (Ethernet) [1]
===================================
Link addr : 00:00:00:00:00:00
MTU : 1500
Flags : AUTO_START,IPv4
Ethernet capabilities supported:
IPv4 unicast addresses (max 1):
 192.168.200.2 manual preferred infinite
IPv4 multicast addresses (max 1):
 <none>
IPv4 gateway : 0.0.0.0
IPv4 netmask : 255.255.255.0
DHCPv4 lease time : 0
DHCPv4 renew time : 0
DHCPv4 server : 0.0.0.0
DHCPv4 requested : 0.0.0.0
DHCPv4 state : disabled
DHCPv4 attempts : 0

uart:~$ net ping -c 10 192.168.200.254
PING 192.168.200.254
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=0 ttl=64 time=291 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=1 ttl=64 time=149 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=2 ttl=64 time=180 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=3 ttl=64 time=243 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=4 ttl=64 time=241 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=5 ttl=64 time=240 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=6 ttl=64 time=167 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=7 ttl=64 time=168 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=8 ttl=64 time=272 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=9 ttl=64 time=157 ms

When you are ready to stop, from the QEMU pane input Ctrl-A x and the QEMU instance will terminate.

Refer to https://github.com/danmilea/hypervisorless_virtio_zcu102/blob/main/README.md for information on creating a hypervisorless virtio build environment.

 Lopper Demonstration

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Lopper Demonstration

1) Clone lopper, using the systemdt-linaro-demo branch

The hash is only required as our input system device tree has not been updated to the latest bus naming used in the openamp assists.

 % git clone https://github.com/devicetree-org/lopper.git -b systemdt-linaro-demo
 % cd lopper

Ensure that the support requirements are installed.

 % cat Pipfile

 [[source]]
 url = "https://pypi.org/simple"
 verify_ssl = true
 name = "pypi"

 [packages]
 flask = "*"
 flask-restful = "*"
 pandas = "*"
 "ruamel.yaml" = "*"
 anytree = "*"
 humanfriendly = "*"

2) Change into the lopper demo directory

 % cd demos/openamp

3) Execute Lopper with openamp assists and lops

 % export LOPPER_DIR="<path to your lopper clone>"
 % $LOPPER_DIR/lopper.py -f -O scratch --enhanced --permissive \
 -a openamp.py -a openamp_xlnx.py -a openamp-xlnx-zynq.py \
 -i ./inputs/openamp-overlay-zynqmp.yaml \
 -i $LOPPER_DIR/lopper/lops/lop-xlate-yaml.dts \
 -i $LOPPER_DIR/lopper/lops/lop-a53-imux.dts -i $LOPPER_DIR/lopper/lops/lop-domain-linux-a53.dts \
 -i $LOPPER_DIR/lopper/lops/lop-openamp-versal.dts -i $LOPPER_DIR/lopper/lops/lop-domain-linux-a53-prune.dts \
 inputs/system-dt/system-top.dts linux-boot.dts

The outputs from this run are: linux-boot.dts and openamp-channel-info.txt

3a) linux-boot.dts

Note that this linux device tree has been created by modifying and transforming the input system device tree (system-top.dts), based on
the description and values in a yaml domain file (openamp-overlay-zynqmp.yaml), transformed by assists (openamp, openampy_xlnx, openamp-xlnx-zynq) and lop files. The lop files provide unit transformations and control the overall flow of the modifications, while the assists provide more complex and context aware changes to the device tree.

We can see that nodes such as reserved-memory have been created from the vring descriptions in the yaml file.

yaml:

 definitions:
 OpenAMP:
 openamp_channel0_access_srams: &openamp_channel0_access_srams # used for access in each domain
 - dev: psu_r5_0_atcm_global
 flags: 0
 - dev: psu_r5_0_btcm_global
 flags: 0

 rpu0vdev0vring0: &rpu0vdev0vring0
 - start: 0x3ed40000
 size: 0x2000
 no-map: 1

 rproc0: &rproc0
 - start: 0x3ed00000
 size: 0x40000
 no-map: 1

 rpu0vdev0vring1: &rpu0vdev0vring1
 - start: 0x3ed44000
 size: 0x4000
 no-map: 1

 rpu0vdev0buffer: &rpu0vdev0buffer
 - start: 0x3ed48000
 size: 0x100000
 no-map: 1

dts:

 reserved-memory {
 #address-cells = <0x2>;
 #size-cells = <0x2>;
 ranges;

 rproc0 {
 no-map;
 reg = <0x0 0x3ed00000 0x0 0x40000>;
 phandle = <0xd0>;
 };

 rpu0vdev0vring0 {
 no-map;
 reg = <0x0 0x3ed40000 0x0 0x2000>;
 phandle = <0xd1>;
 };

 rpu0vdev0vring1 {
 no-map;
 reg = <0x0 0x3ed44000 0x0 0x4000>;
 phandle = <0xd2>;
 };

 rpu0vdev0buffer {
 no-map;
 reg = <0x0 0x3ed48000 0x0 0x100000>;
 compatible = "shared-dma-pool";
 phandle = <0xd3>;
 };
 };

3b) openamp-channel-info.txt

This file is an export of significant values in the yaml, which were used to created nodes and properties in the dts file. They are consumed by
things such as baremetal builds, or other build systems. This ensures that the dts and applications are kept in sync and agree on critical values.

 CHANNEL0VRING0BASE="0x3ed40000"
 CHANNEL0VRING0SIZE="0x2000"
 CHANNEL0VRING1BASE="0x3ed44000"
 CHANNEL0VRING1SIZE="0x4000"
 CHANNEL0VDEV0BUFFERBASE="0x3ed48000"
 CHANNEL0VDEV0BUFFERSIZE="0x100000"
 CHANNEL0VDEV0BUFFERRX="FW_RSC_U32_ADDR_ANY"
 CHANNEL0VDEV0BUFFERTX="FW_RSC_U32_ADDR_ANY"
 CHANNEL0ELFBASE="0x3ed00000"
 CHANNEL0ELFSIZE="0x40000"
 CHANNEL0TO_HOST="0xff340000"
 CHANNEL0TO_HOST-BITMASK="0x1000000"
 CHANNEL0TO_HOST-IPIIRQVECTID="0x3f"
 CHANNEL0TO_REMOTE="0xff310000"
 CHANNEL0TO_REMOTE-BITMASK="0x100"
 CHANNEL0TO_REMOTE-IPIIRQVECTID="0x41"

3c) Modify values in the yaml

We change:

	vring base and size

	access to new devices

	memory for the domain

% diff -u openamp-overlay-zynqmp.yaml openamp-overlay-zynqmp-dev-mem.yaml
--- openamp-overlay-zynqmp.yaml 2022-11-25 03:55:42.912355236 +0000
+++ openamp-overlay-zynqmp-dev-mem.yaml 2022-11-25 03:57:16.404274348 +0000
@@ -7,8 +7,8 @@
 flags: 0

 rpu0vdev0vring0: &rpu0vdev0vring0
- - start: 0x3ed40000
- size: 0x2000
+ - start: 0x00c0ffee
+ size: 0xFEEE
 no-map: 1

 rproc0: &rproc0
@@ -43,6 +43,10 @@
 # if we want to have a list merge, it should be in a list
 - dev: ipi@ff340000 # used for Open AMP RPMsg IPC
 flags: 0
+ - dev: ethernet@ff0e0000
+ flags: 0
+ - dev: ethernet@ff0d0000
+ flags: 0
 - <<+: *openamp_channel0_access_srams

 reserved-memory:
@@ -50,6 +54,12 @@
 # if we want an object / node merge, it should be like this (a map)
 <<+: [*rpu0vdev0vring1, *rpu0vdev0vring0, *rpu0vdev0buffer, *rproc0]

+ memory:
+ os,type: linux
+ memory:
+ - start: 0x4000beef
+ size: 0x7c00beef
+
 domain-to-domain:
 compatible: openamp,domain-to-domain-v1
 remoteproc-relation:

3d) run the lopper with the new inputs

 % $LOPPER_DIR/lopper.py -f -O scratch --enhanced --permissive \
 -a openamp.py -a openamp_xlnx.py -a openamp-xlnx-zynq.py \
 -i ./inputs/openamp-overlay-zynqmp-dev-mem.yaml \
 -i $LOPPER_DIR/lopper/lops/lop-xlate-yaml.dts \
 -i $LOPPER_DIR/lopper/lops/lop-a53-imux.dts -i $LOPPER_DIR/lopper/lops/lop-domain-linux-a53.dts \
 -i $LOPPER_DIR/lopper/lops/lop-openamp-versal.dts -i $LOPPER_DIR/lopper/lops/lop-domain-linux-a53-prune.dts \
 	 inputs/system-dt/system-top.dts linux-boot2.dts

We can see that:

% diff -u linux-boot.dts linux-boot2.dts

a) A new ethernet device has been made available

--- linux-boot.dts	2022-11-25 03:29:00.661642062 +0000
+++ linux-boot2.dts	2022-11-25 03:59:59.544134215 +0000
@@ -1209,6 +1209,25 @@
 phandle = <0x33>;
 };

+ gem2: ethernet@ff0d0000 {
+ compatible = "cdns,zynqmp-gem", "cdns,gem";
+ status = "disabled";
+ interrupt-parent = <&gic_a53>;
+ interrupts = <0x0 0x3d 0x4 0x0 0x3d 0x4>;
+ reg = <0x0 0xff0d0000 0x0 0x1000>;
+ clock-names = "pclk", "hclk", "tx_clk", "rx_clk";
+ #address-cells = <0x1>;
+ #size-cells = <0x0>;
+ #stream-id-cells = <0x1>;
+ iommus = <&smmu 0x876>;
+ power-domains = <0x78 0x1f>;
+ resets = <0x4 0x1f>;
+ clocks = <&zynqmp_clk 0x1f>,
+ <&zynqmp_clk 0x6a>,
+ <&zynqmp_clk 0x2f>,
+ <&zynqmp_clk 0x33>;
+ };
+
 gem3: ethernet@ff0e0000 {

b) the vring base and size addresses have been adjusted

--- linux-boot.dts	2022-11-25 03:29:00.661642062 +0000
+++ linux-boot2.dts	2022-11-25 03:59:59.544134215 +0000

 rpu0vdev0vring0 {
 no-map;
- reg = <0x0 0x3ed40000 0x0 0x2000>;
- phandle = <0xd1>;
+ reg = <0x0 0xc0ffee 0x0 0xfeee>;
+ phandle = <0xd2>;
 };

c) the memory node has been modified

--- linux-boot.dts	2022-11-25 03:29:00.661642062 +0000
+++ linux-boot2.dts	2022-11-25 03:59:59.544134215 +0000

@@ -3146,7 +3165,7 @@
 psu_ddr_0_memory: memory@0 {
 compatible = "xlnx,psu-ddr-1.0";
 device_type = "memory";
- reg = <0x0 0x0 0x0 0x7ff00000 0x0 0x7ff00000 0x0 0x100000>;
+ reg = <0x0 0x4000beef 0x0 0x7c00beef>;
 phandle = <0x9>;
 };

d) that phandles have been adjusted to allow for new devices

 rproc0 {
 no-map;
 reg = <0x0 0x3ed00000 0x0 0x40000>;
- phandle = <0xd0>;
+ phandle = <0xd1>;
 };

4) Xen extraction demo

% $LOPPER_DIR/lopper.py --permissive -f inputs/dt/host-device-tree.dts system-device-tree-out.dts -- \
 extract -t /bus@f1000000/serial@ff010000 -i zynqmp-firmware -x pinctrl-0 -x pinctrl-names -x power-domains -x current-speed -x resets -x 'interrupt-controller.*' -- \
 extract-xen -t serial@ff010000 -o serial@ff010000.dts
[INFO]: cb: extract(/, <lopper.LopperSDT object at 0x7f15355d7310>, 0, ['-t', '/bus@f1000000/serial@ff010000', '-i', 'zynqmp-firmware', '-x', 'pinctrl-0', '-x', 'pinctrl-names', '-x', 'power-domains', '-x', 'current-speed', '-x', 'resets', '-x', 'interrupt-controller.*'])
[INFO]: dropping masked property pinctrl-0
[INFO]: dropping masked property power-domains
[INFO]: dropping masked property pinctrl-names
[INFO][extract-xen]: updating sdt with passthrough property

4a) serial@ff010000.dts is the extracted device tree

% cat serial@ff010000.dts

 /dts-v1/;

 / {
 #address-cells = <0x2>;
 #size-cells = <0x2>;

 passthrough {
 compatible = "xlnx,zynqmp-zcu102-rev1.0", "xlnx,zynqmp-zcu102", "xlnx,zynqmp", "simple-bus";
 ranges;
 #address-cells = <0x2>;
 #size-cells = <0x2>;

 serial@ff010000 {
 port-number = <0x1>;
 device_type = "serial";
 cts-override;
 clocks = <&clock_controller 0x39>,
 <&clock_controller 0x1f>;
 clock-names = "uart_clk", "pclk";
 reg = <0x0 0xff010000 0x0 0x1000>;
 interrupts = <0x0 0x16 0x4>;
 interrupt-parent = <0xfde8>;
 status = "okay";
 compatible = "cdns,uart-r1p12", "xlnx,xuartps";
 u-boot,dm-pre-reloc;
 xen,path = "/axi/serial@ff010000";
 xen,force-assign-without-iommu = <0x1>;
 xen,reg = <0x0 0xff010000 0x0 0x1000 0x0 0xff010000>;
 };

 zynqmp-firmware {
 phandle = <0xc>;
 #power-domain-cells = <0x1>;
 method = "smc";
 u-boot,dm-pre-reloc;
 compatible = "xlnx,zynqmp-firmware";
 extracted,path = "/firmware/zynqmp-firmware/clock-controller";

 clock_controller: clock-controller {
 phandle = <0x3>;
 clock-names = "pss_ref_clk", "video_clk", "pss_alt_ref_clk", "aux_ref_clk", "gt_crx_ref_clk";
 clocks = <&pss_ref_clk>,
 <&video_clk>,
 <&pss_alt_ref_clk>,
 <&aux_ref_clk>,
 <>_crx_ref_clk>;
 compatible = "xlnx,zynqmp-clk";
 #clock-cells = <0x1>;
 u-boot,dm-pre-reloc;
 };
 };

 pss_ref_clk: pss_ref_clk {
 phandle = <0x6>;
 clock-frequency = <0x1fc9350>;
 #clock-cells = <0x0>;
 compatible = "fixed-clock";
 u-boot,dm-pre-reloc;
 extracted,path = "/pss_ref_clk";
 };

 video_clk: video_clk {
 phandle = <0x7>;
 clock-frequency = <0x1fc9f08>;
 #clock-cells = <0x0>;
 compatible = "fixed-clock";
 u-boot,dm-pre-reloc;
 extracted,path = "/video_clk";
 };

 pss_alt_ref_clk: pss_alt_ref_clk {
 phandle = <0x8>;
 clock-frequency = <0x0>;
 #clock-cells = <0x0>;
 compatible = "fixed-clock";
 u-boot,dm-pre-reloc;
 extracted,path = "/pss_alt_ref_clk";
 };

 aux_ref_clk: aux_ref_clk {
 phandle = <0x9>;
 clock-frequency = <0x19bfcc0>;
 #clock-cells = <0x0>;
 compatible = "fixed-clock";
 u-boot,dm-pre-reloc;
 extracted,path = "/aux_ref_clk";
 };

 gt_crx_ref_clk: gt_crx_ref_clk {
 phandle = <0xa>;
 clock-frequency = <0x66ff300>;
 #clock-cells = <0x0>;
 compatible = "fixed-clock";
 u-boot,dm-pre-reloc;
 extracted,path = "/gt_crx_ref_clk";
 };
 };
 };

4b) system-device-tree-out.dts for the modified system device tree with passthrough option

% grep -C4 xen,passthrough system-device-tree-out.dts

 pinctrl-0 = <0x3c>;
 cts-override;
 device_type = "serial";
 port-number = <0x1>;
 xen,passthrough;
 };

 usb0@ff9d0000 {
 #address-cells = <0x2>;

4c) extract an ethernet device

We use the output system device tree from the previous run, as the input for this run.

% $LOPPER_DIR/lopper.py --permissive -f system-device-tree-out.dts system-device-tree-out-final.dts -- \
 extract -o extracted_tree.dts -p -t ethernet@ff0e0000 -i zynqmp-firmware -x 'interrupt-controller.*' -x power-domains -x current-speed -- \
 extract-xen -v -t ethernet@ff0e0000 -o xen-passthrough-eth.dts

[INFO]: cb: extract(/, <lopper.LopperSDT object at 0x7efd688df340>, 0, ['-o', 'extracted_tree.dts', '-p', '-t', 'ethernet@ff0e0000', '-i', 'zynqmp-firmware', '-x', 'interrupt-controller.*', '-x', 'power-domains', '-x', 'current-speed'])
[INFO]: dropping masked property power-domains
[INFO][extract-xen]: ethernet@ff0e0000 interrupt parent found, updating
[INFO][extract-xen]: smmu@fd800000 interrupt parent found, updating
[INFO][extract-xen]: updating sdt with passthrough property
[INFO][extract-xen]: reg found: reg = <0x0 0xff0e0000 0x0 0x1000>; copying and extending to xen,reg
[INFO][extract-xen]: deleting node (referencing node was removed): /extracted/smmu@fd800000

% grep -C4 xen,passthrough system-device-tree-out-final.dts

 phy-mode = "rgmii-id";
 xlnx,ptp-enet-clock = <0x0>;
 local-mac-address = [FF FF FF FF FF FF];
 phandle = <0x22>;
 xen,passthrough;

 ethernet-phy@c {
 reg = <0xc>;
 ti,rx-internal-delay = <0x8>;
--
 pinctrl-0 = <0x3c>;
 cts-override;
 device_type = "serial";
 port-number = <0x1>;
 xen,passthrough;
 };

 usb0@ff9d0000 {
 #address-cells = <0x2>;

 Contributing to the OpenAMP Project

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Contributing to the OpenAMP Project

Release Cycle

	6 month release cycle aligned with Ubuntu (xx.04 and xx.10)

	(feature freeze) release branch cut 1 month before release target

	Maintainence releases are left open-ended for now

Roadmap discussion and publication

	Feature freeze period of a release used for roadmap discussions for next release

	Contributers propose features posted and discussed on mailing list

	Maintainer collects accepted proposals

	Maintainer posts list of development tasks, owners, at open of release cycle

Patch process

	Patches posted on the mailing list for review

	Pull request on github once review cycles are complete

	Maintainer ensures a minimum of 1 week review window prior to merge

Platform maintainers

	Platform code refers to sections of code that apply to specific vendor’s hardware or operating system platform

	Platform maintainers represent OS or hardware platform’s interests in the community

	Every supported OS or hardware platform must have a platform maintainer (via addition to MAINTAINERS file in code base), or patches may not be merged.

	Support for an OS or hardware platform may be removed from the code base if the platform maintainer is non-responsive for more than 2 release cycles

	Responsible for verification and providing feedback on posted patches

	Responsible to ACK platform support for releases (No ACK => platform not supported in the release)

Push rights

	Push rights restricted to the Core Team

	Generally exercised by the maintainers for each repository

	Maintainers manage delegation between themselves

 Links

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Links

	The OpenAMP project home page: https://www.openampproject.org/

	
	OpenAMP mailing lists: https://lists.openampproject.org/mailman/listinfo
	Note: Before getting the mailing lists, we used this Google Group [https://groups.google.com/g/open-amp]. The Google Group is only listed here for reference to older content. Please use the mailing lists.

 OpenAMP Protocol Details

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

OpenAMP Protocol Details

Contents:

	Asymmetric Multiprocessing Intro

	Components and Capabilities

	RPMsg Messaging Protocol
	Protocol Layers

	RPMsg Protocol Limitations

	RPMsg Communication Flow

	Life Cycle Management
	LCM Overview

	Creation and Boot of Remote Firmware Using remoteproc

	System Wide Considerations

	Resource Table Evolution
	Overview

	Needs

	Enhancement

	Mechanisms

	OpenAMP Design Docs

 Asymmetric Multiprocessing Intro

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Asymmetric Multiprocessing Intro

An embedded AMP system is characterized by multiple homogeneous and/or heterogeneous processing cores integrated into one System-on-a-Chip (SoC). Examples include:

	The Xilinx MPSoC that has four ARM Cortex-A53, two ARM Cortex-R5, and potentially a number of MicroBlaze cores.

	The NXP i.MX6SoloX/i.MX7d SoCs that utilizes ARM Cortex-A9 and ARM Cortex-M4F cores

	The Texas Instruments TI AM57x SoCs that have dual ARM Cortex A15, dual ARM Cortex M4, and C66x DSP cores.

These cores typically run independent instances of homogeneous and/or heterogeneous software environments, such as Linux, RTOS, and Bare Metal that work together to achieve the design goals of the end application. While Symmetric Multiprocessing (SMP) operating systems allow load balancing of application workload across homogeneous processors present in such AMP SoCs, asymmetric multiprocessing design paradigms are required to leverage parallelism from the heterogeneous cores present in the system.

Increasingly, today’s multicore applications require heterogeneous processing power. Heterogeneous multicore SoCs often have one or more general purpose CPUs (for example, dual ARM Cortex A9 cores on Xilinx Zynq) with DSPs and/or smaller CPUs and/or soft IP (on SoCs such as Xilinx Zynq MPSOC). These specialized CPUs, as compared to the general purpose CPUs, are typically dedicated for demand-driven offload of specialized application functionality to achieve maximum system performance. Systems developed using these types of SoCs, characterized by heterogeneity in both hardware and software, are generally termed as AMP systems.

Other reasons to run heterogeneous software environments (e.g. multi-OS) include:

	
	Needs for multiple environments with different characteristics
	
	Real-time (RTOS) and general purpose (i.e. Linux)

	Safe/Secure environment and regular environment

	GPL and non-GPL environments

	
	Integration of code written for multiple environments
	
	Legacy OS and new OS

In AMP systems, it is typical for software running on a master to bring up software/firmware contexts on a remote on a demand-driven basis and communicate with them using IPC mechanisms to offload work during run time. The participating master and remote processors may be homogeneous or heterogeneous in nature.

A master is defined as the CPU/software that is booted first and is responsible for managing other CPUs and their software contexts present in an AMP system. A remote is defined as the CPU/software context managed by the master software context present.

 Components and Capabilities

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Components and Capabilities

The key components and capabilities provided by the OpenAMP Framework include:

	remoteproc — This component allows for the Life Cycle Management (LCM) of remote processors from software running on a master processor. The remoteproc API provided by the OpenAMP Framework is compliant with the remoteproc infrastructure present in upstream Linux 3.4.x kernel onward. The Linux remoteproc infrastructure and API was first implemented by Texas Instruments.

	RPMsg – The RPMsg API enables Inter Processor Communications (IPC) between independent software contexts running on homogeneous or heterogenous cores present in an AMP system. This API is compliant with the RPMsg bus infrastructure present in upstream Linux 3.4.x kernel onward. The Linux RPMsg bus and API infrastructure was first implemented by Texas Instruments.

Texas Instruments’ remoteproc and RPMsg infrastructure available in the upstream Linux kernel today enable the Linux applications running on a master processor to manage the life cycle of remote processor/firmware and perform IPC with them. However, there is no open- source API/software available that provides similar functionality and interfaces for other possible software contexts (RTOS- or bare metal-based applications) running on the remote processor to communicate with the Linux master. Also, AMP applications may require RTOS- or bare metal-based applications to run on the master processor and be able to manage and communicate with various software environments (RTOS, bare metal, or even Linux) on the remote processor.

The OpenAMP Framework fills these gaps. It provides the required LCM and IPC infrastructure from the RTOS and bare metal environments with the API conformity and functional symmetry available in the upstream Linux kernel. As in upstream Linux, the OpenAMP Framework’s remoteproc and RPMsg infrastructure uses virtio as the transport layer/abstraction.

The following figure shows the various software environments/configurations supported by the OpenAMP Framework. As shown in this illustration, the OpenAMP Framework can be used with RTOS or bare metal contexts on a remote processor to communicate with Linux applications (in kernel space or user space) or other RTOS/bare metal-based applications running on the master processor through the remoteproc and RPMsg components. Managing Remote Processes with the OpenAMP framework

[image: ../_images/openamp_components.jpg]
The OpenAMP Framework also serves as a stand-alone library that enables RTOS and bare metal applications on a master processor to manage the life cycle of remote processor/firmware and communicate with them using RPMsg.

In addition to providing a software framework/API for LCM and IPC, the OpenAMP Framework supplies a proxy infrastructure that provides a transparent interface to remote contexts from Linux user space applications running on the master processor. The proxy application hides all the logistics involved in bringing-up the remote software context and its shutdown sequence. In addition, it supports RPMsg-based Remote Procedure Calls (RPCs) from remote context. A retargeting API available from the remote context allows C library system calls such as “_open”, “_close”, “_read”, and “_write” to be forwarded to the proxy application on the master for service. For more information on this infrastructure and its capabilities, see Figure 5-1 on page 60. In addition to the core capabilities, the OpenAMP Framework contains abstraction layers (porting layer) for migration to different software environments and new target processors/platforms.

 RPMsg Messaging Protocol

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

RPMsg Messaging Protocol

In asymmetric multiprocessor systems, the most common way for different cores to cooperate is to use a shared memory-based communication. There are many custom implementations, which means that the considered systems cannot be directly interconnected. Therefore, this document’s aim is to offer a standardization of this communication based on existing components (RPMsg, VirtIO).

Protocol Layers

The whole communication implementation can be separated in three different ISO/OSI layers - Transport, Media Access Control and Physical layer. Each of them can be implemented separately and for example multiple implementations of the Transport Layer can share the same implementation of the MAC Layer (VirtIO) and the Physical Layer. Each layer is described in following sections.

[image: ../_images/protocol_layers.jpg]

Physical Layer – Shared Memory

The solution proposed in this document requires only two basic hardware components - shared memory (accessible by both communicating sides) and inter-core interrupts (in a specific configuration optional). The minimum configuration requires one interrupt line per communicating core meaning two interrupts in total. This configuration is briefly presented in figure at the beginning of this section. It is to be noticed that no inter-core synchronization hardware element such as inter-core semaphore, inter-core queue or inter-core mutex is needed! This is thanks to the nature of the virtqueue, which uses single-writer-single-reader circular buffering. (As defined in next subsection)

In case the “used” and “avail” ring buffers have a bit set in their configuration flags field, the generation of interrupts can be completely suppressed - in such a configuration, the interrupts are not necessary. However both cores need to poll the “ring” and “used” ring buffers for new incoming messages, which may not be optimal.

[image: ../_images/core_to_core_interrupt.jpg]

Media Access Layer - VirtIO

This layer is the key part of the whole solution - thanks to this layer, there is no need for inter-core synchronization. This is achieved by a technique called single-writer single-reader circular buffering, which is a data structure enabling multiple asynchronous contexts to interchange data.

[image: ../_images/vrings.jpg]
This technique is however applicable only in core-to-core configuration, not in core-to-multicore configuration, since in such a case, there would be multiple writers to the “IN” ring buffer. This would require a synchronization element, [such as a semaphore?], which is not desirable.

The above shown picture describes the vring component. Vring is composed of three elementary parts - buffer descriptor pool, the “available” ring buffer (or input ring buffer) and the “used” ring buffer (or free ring buffer). All three elements are physically stored in the shared memory.

Each buffer descriptor contains a 64-bit buffer address, which holds an address to a buffer stored in the shared memory (as seen physically by the “receiver” or host of this vring), its length as a 32-bit variable, 16-bit flags field and 16-bit link to the next buffer descriptor. The link is used to chain unused buffer descriptors and to chain descriptors, which have the F_NEXT bit set in the flags field to the next descriptor in the chain.

[image: ../_images/vring_descriptor.jpg]
The input ring buffer contains its own flags field, where only the 0th bit is used - if it is set, the “writer” side should not be notified, when the “reader” side consumes a buffer from the input or “avail” ring buffer. By default the bit is not set, so after the reader consumes a buffer, the writer should be notified by triggering an interrupt. The next field of the input ring buffer is the index of the head, which is updated by the writer, after a buffer index containing a new message is written in the ring[x] field.

[image: ../_images/vring_descriptor_flags.jpg]
The last part of the vring is the “used” ring buffer. It contains also a flags field and only the 0th bit is used - if set, the writer side will not be notified when the reader updates the head index of this free ring buffer. The following picture shows the ring buffer structure. The used ring buffer differs from the avail ring buffer. For each entry, the length of the buffer is stored as well.

[image: ../_images/vrings_used_buffers.jpg]
Both “used” and “avail” ring buffers have a flags field. Its purpose is mainly to tell the writer whether he should interrupt the other core when updating the head of the ring. The same bit is used for this purpose in both “used” and “avail” ring buffers:

[image: ../_images/vrings_used_buffers_flags.jpg]

Transport Layer - RPMsg

RPMsg Header Definition

Each RPMsg message is contained in a buffer, which is present in the shared memory. This buffer is pointed to by the address field of a buffer descriptor from vring’s buffer descriptor pool. The first 16 bytes of this buffer are used internally by the transport layer (RPMsg layer). The first word (32bits) is used as an address of the sender or source endpoint, next word is the address of the receiver or destination endpoint. There is a reserved field for alignment reasons (RPMsg header is thus 16 bytes aligned). Last two fields of the header are the length of the payload (16bit) and a 16-bit flags field. The reserved field is not used to transmit data between cores and can be used internally in the RPMsg implementation. The user payload follows the RPMsg header.

[image: ../_images/rpmsg_header.jpg]
Special consideration should be taken if an alignment greater than 16 bytes is required; however, this is not typical for a shared memory, which should be fast and is therefore often not cached (alignment greater than 8 bytes is not needed at all).

Flags Field

The flags field of the RPMsg header is currently unused by RPMsg and is reserved. Any propositions for what this field could be used for is welcome. It could be released for application use, but this can be considered as inconsistent - RPMsg header would not be aligned and the reserved field would be therefore useless.

[image: ../_images/rpmsg_flags.jpg]

RPMsg Channel

Every remote core in RPMsg component is represented by RPMsg device that provides a communication channel between master and remote, hence RPMsg devices are also known as channels RPMsg channel is identified by the textual name and local (source) and destination address. The RPMsg framework keeps track of channels using their names.

RPMsg Endpoint

RPMsg endpoints provide logical connections on top of RPMsg channel. It allows the user to bind multiple rx callbacks on the same channel.

Every RPMsg endpoint has a unique src address and associated call back function. When an application creates an endpoint with the local address, all the further inbound messages with the destination address equal to local address of endpoint are routed to that callback function. Every channel has a default endpoint which enables applications to communicate without even creating new endpoints.

[image: ../_images/rpmsg_endpoint.jpg]

RPMsg Protocol Limitations

The RPMSG document has the concept of the static channel but it is not implemented in upstream Linux and OpenAMP. Please see https://www.kernel.org/doc/Documentation/rpmsg.txt. The protocol must define connection sequence when channel is created statically.
No synchronization point is defined by the RPMsg after which both sides can communicate reliably with each other. In the current protocol, at startup, the master sends notification to remote to let it know that it can receive name service announcement. However, master does not consider the fact that if the remote is ready to handle notification at this point in time.

 RPMsg Communication Flow

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

RPMsg Communication Flow

The following figure describes the sequence used for transaction of a RPMsg message from one core to the other.
The sequence differs according to the roles of core A and core B. In the figure above, core A is the Master and core B is the Remote. The Master core allocates buffers used for the transmission from the “used” ring buffer of a vring, writes RPMsg Header and application payload to it and then enqueues it to the “avail” ring buffer.

[image: ../_images/rpmsg_flow.jpg]
The Remote core gets the received RPMsg buffer from the “avail” ring buffer, processes it and then returns it back to the “used” ring buffer. When the Remote core is sending a message to the Master core, “avail” and “used” ring buffers role are swapped.

The reason for swapping the roles of the ring buffers comes from the fact, that the Master core works as a Buffer Provider. The Buffer Provider has a complete control of memory management and shared memory allocation. Obviously, when the Master core, or Buffer Provider, does not fill the “avail” ring buffer of VRING1 (Orange), the Remote core is unable to send a message to the master. This can be used to throttle the communication generated by the Remote core. It is to be noticed, that the master always dequeues from the “used” ring buffer and enqueues to the “avail” ring buffer. For the remote, the situation is inverse. The triggering of interrupts is optional. It is governed by the flags in “used” and “avail” ring buffers.

 Life Cycle Management

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Life Cycle Management

The LCM(Life Cycle Management) component of OpenAMP is known as remoteproc. Remoteproc APIs provided by the OpenAMP Framework allow software applications running on the master processor to manage the life cycle of a remote processor and its software context. A complete description of the remoteproc workflow and APIs are provided.

LCM Overview

The remoteproc APIs provide life cycle management of remote processors by performing five essential functions.

	Allow the master software applications to load the code and data sections of the remote firmware image to appropriate locations in memory for in-place execution

	Release the remote processor from reset to start execution of the remote firmware

	Establish RPMsg communication channels for run-time communications with the remote context

	Shut down the remote software context and processor when its services are not needed

	Provide an API for use in the remote application context that allows the remote applications to seamlessly initialize the remoteproc system on the remote side and establish communication channels with the master context

The remoteproc component currently supports Executable and Linkable Format (ELF) for the remote firmware; however, the framework can be easily extended to support other image formats. The remote firmware image publishes the system resources it requires to remoteproc on the master using a statically linked resource table data structure. The resource table data structure contains entries that define the system resources required by the remote firmware (for example, contiguous memory carve-outs required by remote firmware’s code and data sections), and features/functionality supported by the remote firmware (like virtio devices and their configuration information required for RPMsg-based IPC).

The remoteproc APIs on the master processor use the information published through the firmware resource table to allocate appropriate system resources and to create virtio devices for IPC with the remote software context. The following figure illustrates the resource table usage.

[image: ../_images/lcm.jpg]
When the application on the master calls to the remoteproc_init API, it performs the following:

	Causes remoteproc to fetch the firmware ELF image and decode it

	Obtains the resource table and parses it to handle entries

	Carves out memory for remote firmware before creating virtio devices for communications with remote context

The master application then performs the following actions:

	Calls the remoteproc_boot API to boot the remote context

	Locates the code and data sections of the remote firmware image

	Releases the remote processor to start execution of the remote firmware.

After the remote application is running on the remote processor, the remote application calls the remoteproc_resource_init API to create the virtio/RPMsg devices required for IPC with the master context. Invocation of this API causes remoteproc on the remote context to use the rpmsg name service announcement feature to advertise the rpmsg channels served by the remote application.

The master receives the advertisement messages and performs the following tasks:

	Invokes the channel created callback registered by the master application

	Responds to remote context with a name service acknowledgement message

After the acknowledgement is received from master, remoteproc on the remote side invokes the RPMsg channel-created callback registered by the remote application. The RPMsg channel is established at this point. All RPMsg APIs can be used subsequently on both sides for run time communications between the master and remote software contexts.

To shut down the remote processor/firmware, the remoteproc_shutdown API is to be used from the master context. Invoking this API with the desired remoteproc instance handle asynchronously shuts down the remote processor. Using this API directly does not allow for graceful shutdown of remote context.

For gracefully bringing down the remote context, the following steps can be performed:

	The master application sends an application-specific shutdown message to the remote context

	The remote application cleans up application resources, sends a shutdown acknowledge to master, and invokes remoteproc_resource_deinit API to deinitialize remoteproc on the remote side.

	On receiving the shutdown acknowledge message, the master application invokes the remoteproc_shutdown API to shut down the remote processor and de-initialize remoteproc using remoteproc_deinit on its side.

Creation and Boot of Remote Firmware Using remoteproc

You can create and boot remote firmware for Linux, RTOS, and bare metal-based remote applications using remoteproc. The following procedure provides general steps for creating and executing remote firmware on a supported platform.

The following figure illustrates the remote firmware creation process.

[image: ../_images/lcm_boot.jpg]

Defining the Resource Table and Creating the Remote ELF Image

Creating a remote image through remoteproc begins by defining the resource table and creating the remote ELF image.

Procedure

	Define the resource table structure in the application. The resource table must minimally contain carve-out and VirtIO device information for IPC.

As an example, please refer to the resource table defined in the bare metal remote echo test application at <open_amp>/apps/machine/zynq/rsc_table.c. The resource table contains entries for memory carve-out and virtio device resources. The memory carve-out entry contains info like firmware ELF image start address and size. The virtio device resource contains virtio device features, vring addresses, size, and alignment information. The resource table data structure is placed in the resource table section of remote firmware ELF image using compiler directives.

	After defining the resource table and creating the OpenAMP Framework library, link the remote application with the RTOS or bare metal library and the OpenAMP Framework library to create a remote firmware ELF image capable of in-place execution from its pre-determined memory region. (The pre-determined memory region is determined according to guidelines provided by section.)

	For remote Linux, step 1 describes modifications to be made to the resource table. The previous flow figures shows the high level steps involved in creation of the remote Linux firmware image. The flow shows to create a Linux FIT image that encapsulates the Linux kernel image, Device Tree Blob (DTB), and initramfs.

The user applications and kernel drivers required on the remote Linux context could be built into the initramfs or moved to the remote root file system as needed after boot. The FIT image is linked along with a boot strap package provided within the OpenAMP Framework. The bootstrap implements the functionality required to decode the FIT image (using libfdt), uncompress the Linux kernel image (using zlib) and locate the kernel image, initramfs, and DTB in RAM. It can also set up the ARM general purpose registers with arguments to boot Linux, and transfer control to the Linux entry point.

Making Remote Firmware Accessible to the Master

After creating the remote firmware’s ELF image, you need to make it accessible to remoteproc in the master context.

Procedure

	If the RTOS- or bare metal-based master software context has a file system, place this firmware ELF image in the file system.

	Implement the get_firmware API in firmware.c (in the <open_amp>/lib/common/ directory) to fetch the remote firmware image by name from the file system.

	For AMP use cases with Linux as master, place the firmware application in the root file system for use by Linux remoteproc platform drivers.

In the OpenAMP Framework reference port to Zynq ZC702EVK, the bare metal library used by the master software applications do not include a file system. Therefore, the remote image is packaged along with the master ELF image. The remote ELF image is converted to an object file using “objcpy” available in the “GCC bin-utils”. This object file is further linked with the master ELF image.

The remoteproc component on the master uses the start and end symbols from the remote object files to get the remote ELF image base and size. Since the logistics used by the master to obtain a remote firmware image is deployment specific, the config_get_firmware API in firmware.c in the <open_amp>/lib/common/ directory implements all the logistics described in this procedure to enable the OpenAMP Framework remoteproc on the master to obtain the remote firmware image.

You can now use the remoteproc APIs.

 System Wide Considerations

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

System Wide Considerations

AMP systems could either be supervised (using a hypervisor to enforce isolation and resource virtualization) or unsupervised (modifying each participating software context to ensure best- effort isolation and cooperative usage of shared resources). With unsupervised AMP systems, there is no strict isolation or supervision of shared resource usage.

Take the following system-wide considerations into account to develop unsupervised AMP systems using the OpenAMP framework.

	Determine system architecture/topology

The OpenAMP framework implicitly assumes master-slave (remote) system architecture. The topology for the master-slave (remote) architecture should be determined; either star, chain, or a combination. The following figure shows some simple use cases.

	Case 1 — A single master software context on processor 1 controlling life cycle and communicating with two independent remote software contexts on processors 2 and 3, in star topology,

	Case 2 — Master software context 1 on processor 1 brings up remote software context 1 on processor 2. This context acts as master software context 2 for remote software context 2 on processor 3, in chain topology.

[image: ../_images/topo_types.jpg]

	Determine system and IO resource partitioning

Various OSs, RTOSs, and bare metal environments have their own preferred mechanisms for discovering platform-specific information such as available RAM memory, available peripheral IO resources (their memory-mapped IO region), clocks, interrupt resources, and so forth.

For example, the Linux kernel uses device trees and bare metal environment typically define platform-specific device information in headers or dedicated data structures that would be compiled into the application.

To ensure mutually-exclusive usage of unshared system (memory) and IO resources (peripherals) between the participating software environments in an AMP system, you are required to partition the resources so that each software environment is only aware of the resources that are available to it. This would involve, for example, removing unused resource nodes and modifying the available memory definitions from the device tree sources, platform definition files, headers, and so forth, to ensure best-effort partitioning of system resources.

	Determine memory layout

For the purpose of this description, assume you are using the Zynq SOC used in AMP system architecture with SMP Linux running on the dual Cortex A9 cores, and a RTOS on one instance of Microblaze soft core, and bare metal on another instance of Microblaze soft core in the fabric.

To develop an AMP system using the OpenAMP Framework, it is important to determine the memory regions that would be owned and shared between each of the participating software environments in the AMP system. For example, in a configuration such as this, the memory address ranges owned (for code/data/bss/heap) by each participating OS or bare metal context, and the shared memory regions to be used by IPC mechanisms (virtio rings and memory for data buffers) needs to be determined. Memory alignment requirements should be taken into consideration while making this determination.

The following image illustrates the memory layout for Linux master/RTOS-based remote application, and RTOS-based master/bare metal-based remote application in chain configuration. Determinint the Memory Layout in an AMP System

[image: ../_images/memory_layout.jpg]

	Ensure cooperative usage of shared resources between software environments in the AMP system

For the purpose of this discussion, assume you are using a Linux master/bare metal- based remote system configuration.

The interrupt controller is typically a shared resource in multicore SoCs. It is general practice for OSs to reset and initialize (clear and disable all interrupts) the interrupt controller during their boot sequence given the general assumption that the OS would own the entire system. This will not work in AMP systems; if an OS in remote software context resets and initializes the interrupt controller, it would catastrophically break the master software contexts run time since the master context could already be using the interrupt controller to manage its interrupt resources. Therefore, remote software environments should be patched such that they cooperatively use the interrupt controller (for example, do not reset/clear/disable all interrupts blindly but initialize only the interrupts that belong to the remote context). Ensure the timer peripheral used by the

remote OS/RTOS context is different from the one used by the master software context so the individual run-times do not interfere with each other.

 Resource Table Evolution

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Resource Table Evolution

Overview

This page is to collect all ideas for the evolution of the remoteproc resource table.

Needs

Compatibility with Linux kernel

The evolution should be done in cooperation with Linux remoteproc community.

Review current resource table fields

Review the current version resource table to confirm fields relevance (e.g name fields). The aim is to keep resource table as small as possible…

64 bit addresses

Parameter passing

In order to pass parameters to the remote application, it could be useful to have a new resource type for that.

Evolutive virtio dev features

Currently, field for virtio dev features is 32 bits in rsc table. However, some virtio dev now have bits > 32 bit.

Pointer to Device Tree

vdev buffer management

	Add possibility to provide DA to fix the vdev buffers memory region and size (carveout?)

	Allow to specify the size of the buffers, depending on the direction.

Trace evolution

Improve the trace mechanism to increase depth.

Enhancement

To confirm a need…

Define resource table ownership

The resource table has to be managed by only one core, the master. To break the master slave relationship, a field that define the ownership of the resource table, could be added

Include the resource table size

Add size information in header to avoid to parse the whole resource table to retrieve the length (memory allocation/mapping)

New resource to provide processors states

Add resource that defines a structure to share the processor states. This can be used by some systems to manage low power and crash mechanisms.

Mechanisms

Discussion of how the add the new capabilities to the resource table while providing back and forward compatibility.

Resource table version number

The existing resource table definition has a version number. This number could be incremented for a new format.

The issue with the method is that it is all or nothing and does not allow new firmware to be used with an old kernel.

clementleger: IMHO, this is not a real “issue”, if new firmware requires new capabilities in resource table, then it will use the new format and expect a master that support such features. If the firmware does not need them, then it will stick with old format. Having a backward compatibility seems mandatory however a forward compatibility seems really limitating.

Multiple resource tables of different versions could be included but this is rather bulky and awkward and a new method would need to be defined for marking and locating the various versions.

Per item version number

Resource table item IDs are currently 32 bits. It has been suggested that this is a very large range for this purpose. One idea would be to subdivide the 32 bits into fields and designate some bits to be an item type specific version number.

clementleger: This is a bit clunky. If we are modifying the resource table, it would be better to add a new field to handled such cases. Actually, all resources have reserved fields. IMHO, these fields should be used for versionning if using a new version (they were currently 0) so they are well suited to be used as a versionning field. But this probably be discussed on the mailing list. the vdev_vring resources are tied to rsc_vdev so it will mosty probably be used in conjunction with them and the versionning of vdev_rsc will apply to them.

This would allow multiple versions of the same type to be included in the resourse table and the kernel could look for the greatest version that it understands. The bit fields makes this logic easier than if unrelated 32 bit values were used.

Per item Priority

Item ID bit fields could also/instead be used to define what a consumer should do it if does not understand the Item ID. A priority of “optional” means that the consumer can ignore the Item if it does not understand it and a priority of “required” means that the consumer should refuse to load firmware that contains this item ID. Other priorities might be defined but at least these two would make sense.

vdev buffer management

Should we add a new resource tied to the vdev one to define a DA and buffer size? Do we need to define independent memory region for both direction (P2P)? Buffer size and number of buffers should depend on the direction.

Traces

The existing tracing mechanism is relying on a circular buffer. The depth of the trace is the size of the buffer as no mechanism exists to extract the traces before overflow. Proposal is to implement trace extraction based on a flip flop buffer with notifications (mailbox notifyID). This would allow the main processor to extract the traces in time to fill its own logs buffer/file. The Impact in the resource table would be a new resource structure or the addition of a “trace method” field in existing resource structure.

Firmware publishes multiple versions of Resource table

TODO

 OpenAMP Design Docs

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

OpenAMP Design Docs

 OpenAMP Libraries User Guide

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

OpenAMP Libraries User Guide

Contents:

	Data Structures

	Porting GuideLine

 Data Structures

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Data Structures

 Porting GuideLine

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Porting GuideLine

The OpenAMP Framework uses libmetal to provide abstractions that allow for porting of the OpenAMP Framework to various software environments (operating systems and bare metal environments) and machines (processors/platforms). To port OpenAMP for your platform, you will need to:

	add your system environment support to libmetal,

	implement your platform specific remoteproc driver.

	define your shared memory layout and specify it in a resource table.

Add System/Machine Support in Libmetal

User will need to add system/machine support to lib/system/<SYS>/ directory in libmetal repository. OpenAMP requires the following libmetal primitives:

	alloc, for memory allocation and memory free

	io, for memory mapping. OpenAMP required memory mapping in order to access vrings and carved out memory.

	mutex

	sleep, at the moment, OpenAMP only requires microseconds sleep as when OpenAMP fails to get a buffer to send messages, it will call this function to sleep and then try again.

	init, for libmetal initialization.

Please refer to lib/system/generic/ when adding RTOS support to libmetal.

libmetal uses C11/C++11 stdatomics interface for atomic operations, if you use a different compiler to GNU gcc, you may need to implement the atomic operations defined in lib/compiler/gcc/atomic.h.

Platform Specific Remoteproc Driver

User will need to implement platform specific remoteproc driver to use remoteproc life cycle management APIs. The remoteproc driver platform specific functions are defined in this file: lib/include/openamp/remoteproc.h. Here are the remoteproc functions needs platform specific implementation.

	init(), instantiate the remoteproc instance with platform specific config parameters.

	remove(), destroy the remoteproc instance and its resource.

	mmap(), map the memory speficified with physical address or remote device address so that it can be used by the application.

	handle_rsc(), handler to the platform specific resource which is specified in the resource table.

	config(), configure the remote processor to get it ready to load application.

	start(), start the remote processor to run the application.

	stop(), stop the remote processor from running but not power it down.

	shutdown(), shutdown the remote processor and you can power it down.

	notify(), notify the remote processor.

Platform Specific Porting to Use Remoteproc to Manage Remote Processor

User will need to implement the above platform specific remoteproc driver functions. After that, user can use remoteproc APIs to run application on a remote processor. E.g.:

#include <openamp/remoteproc.h>

/* User defined remoteproc operations */
extern struct remoteproc_ops rproc_ops;

/* User defined image store operations, such as open the image file, read
 * image from storage, and close the image file.
 */

extern struct image_store_ops img_store_ops;
/* Pointer to keep the image store information. It will be passed to user
 * defined image store operations by the remoteproc loading application
 * function. Its structure is defined by user.
 */
void *img_store_info;

struct remoteproc rproc;

void main(void)
{
 /* Instantiate the remoteproc instance */
 remoteproc_init(&rproc, &rproc_ops, &private_data);

 /* Optional, required, if user needs to configure the remote before
 * loading applications.
 */
 remoteproc_config(&rproc, &platform_config);

 /* Load Application. It only supports ELF for now. */
 remoteproc_load(&rproc, img_path, img_store_info, &img_store_ops, NULL);

 /* Start the processor to run the application. */
 remoteproc_start(&rproc);

 /* ... */

 /* Optional. Stop the processor, but the processor is not powered
 * down.
 */
 remoteproc_stop(&rproc);

 /* Shutdown the processor. The processor is supposed to be powered
 * down.
 */
 remoteproc_shutdown(&rproc);

 /* Destroy the remoteproc instance */
 remoteproc_remove(&rproc);
}

Platform Specific Porting to Use RPMsg

RPMsg in OpenAMP implementation uses VirtIO to manage the shared buffers. OpenAMP library provides remoteproc VirtIO backend implementation. You don’t have to use remoteproc backend. You can implement your VirtIO backend with the VirtIO and RPMsg implementation in OpenAMP. If you want to implement your own VirtIO backend, you can refer to the [remoteproc VirtIO backend implementation]: https://github.com/OpenAMP/open-amp/blob/master/lib/remoteproc/remoteproc_virtio.c

Here are the steps to use OpenAMP for RPMsg communication:

#include <openamp/remoteproc.h>
#include <openamp/rpmsg.h>
#include <openamp/rpmsg_virtio.h>

/* User defined remoteproc operations for communication */
sturct remoteproc rproc_ops = {
 .init = local_rproc_init;
 .mmap = local_rproc_mmap;
 .notify = local_rproc_notify;
 .remove = local_rproc_remove;
};

/* Remoteproc instance. If you don't use Remoteproc VirtIO backend,
 * you don't need to define the remoteproc instance.
 */
struct remoteproc rproc;

/* RPMsg VirtIO device instance. */
struct rpmsg_virtio_device rpmsg_vdev;

/* RPMsg device */
struct rpmsg_device *rpmsg_dev;

/* Resource Table. Resource table is used by remoteproc to describe
 * the shared resources such as vdev(VirtIO device) and other shared memory.
 * Resource table resources definition is in the remoteproc.h.
 * Examples of the resource table can be found in the OpenAMP repo:
 * - apps/machine/zynqmp/rsc_table.c
 * - apps/machine/zynqmp_r5/rsc_table.c
 * - apps/machine/zynq7/rsc_table.c
 */
void *rsc_table = &resource_table;

/* Size of the resource table */
int rsc_size = sizeof(resource_table);

/* Shared memory metal I/O region. It will be used by OpenAMP library
 * to access the memory. You can have more than one shared memory regions
 * in your application.
 */
struct metal_io_region *shm_io;

/* VirtIO device */
struct virtio_device *vdev;

/* RPMsg shared buffers pool */
struct rpmsg_virtio_shm_pool shpool;

/* Shared buffers */
void *shbuf;

/* RPMsg endpoint */
struct rpmsg_endpoint ept;

/* User defined RPMsg name service callback. This callback is called
 * when there is no registered RPMsg endpoint is found for this name
 * service. User can create RPMsg endpoint in this callback. */
void ns_bind_cb(struct rpmsg_device *rdev, const char *name, uint32_t dest);

/* User defined RPMsg endpoint received message callback */
void rpmsg_ept_cb(struct rpmsg_endpoint *ept, void *data, size_t len,
 uint32_t src, void *priv);

/* User defined RPMsg name service unbind request callback */
void ns_unbind_cb(struct rpmsg_device *rdev, const char *name, uint32_t dest);

void main(void)
{
 /* Instantiate remoteproc instance */
 remoteproc_init(&rproc, &rproc_ops);

 /* Mmap shared memories so that they can be used */
 remoteproc_mmap(&rproc, &physical_address, NULL, size,
 <memory_attributes>, &shm_io);

 /* Parse resource table to remoteproc */
 remoteproc_set_rsc_table(&rproc, rsc_table, rsc_size);

 /* Create VirtIO device from remoteproc.
 * VirtIO device master will initiate the VirtIO rings, and assign
 * shared buffers. If you running the application as VirtIO slave, you
 * set the role as VIRTIO_DEV_SLAVE.
 * If you don't use remoteproc, you will need to define your own VirtIO
 * device.
 */
 vdev = remoteproc_create_virtio(&rproc, 0, VIRTIO_DEV_MASTER, NULL);

 /* This step is only required if you are VirtIO device master.
 * Initialize the shared buffers pool.
 */
 shbuf = metal_io_phys_to_virt(shm_io, SHARED_BUF_PA);
 rpmsg_virtio_init_shm_pool(&shpool, shbuf, SHARED_BUFF_SIZE);

 /* Initialize RPMsg VirtIO device with the VirtIO device */
 /* If it is VirtIO device slave, it will not return until the master
 * side set the VirtIO device DRIVER OK status bit.
 */
 rpmsg_init_vdev(&rpmsg_vdev, vdev, ns_bind_cb, io, shm_io, &shpool);

 /* Get RPMsg device from RPMsg VirtIO device */
 rpmsg_dev = rpmsg_virtio_get_rpmsg_device(&rpmsg_vdev);

 /* Create RPMsg endpoint. */
 rpmsg_create_ept(&ept, rdev, RPMSG_SERVICE_NAME, RPMSG_ADDR_ANY,
 rpmsg_ept_cb, ns_unbind_cb);

 /* If it is VirtIO device master, it sends the first message */
 while (!is_rpmsg_ept_read(&ept)) {
 /* check if the endpoint has binded.
 * If not, wait for notification. If local endpoint hasn't
 * been bound with the remote endpoint, it will fail to
 * send the message to the remote.
 */
 /* If you prefer to use interrupt, you can wait for
 * interrupt here, and call the VirtIO notified function
 * in the interrupt handling task.
 */
 rproc_virtio_notified(vdev, RSC_NOTIFY_ID_ANY);
 }
 /* Send RPMsg */
 rpmsg_send(&ept, data, size);

 do {
 /* If you prefer to use interrupt, you can wait for
 * interrupt here, and call the VirtIO notified function
 * in the interrupt handling task.
 * If vdev is notified, the endpoint callback will be
 * called.
 */
 rproc_virtio_notified(vdev, RSC_NOTIFY_ID_ANY);
 } while(!ns_unbind_cb_is_called && !user_decided_to_end_communication);

 /* End of communication, destroy the endpoint */
 rpmsg_destroy_ept(&ept);

 rpmsg_deinit_vdev(&rpmsg_vdev);

 remoteproc_remove_virtio(&rproc, vdev);

 remoteproc_remove(&rproc);
}

 Index

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Index

 B
 | D
 | E
 | N
 | S

B

 	
 	base specification

 	
 	binding

D

 	
 	DTB

 	
 	DTS

E

 	
 	execution domain

N

 	
 	node

S

 	
 	SMP

 	
 	SoC

 	standard devicetree

 openamp_docs

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

openamp_docs

OpenAMP Documentation sources for Sphinx

If you are looking for the end-user version of the documentation, you can find the OpenAMP Readthedocs site here [https://openamp.readthedocs.io/en/latest/index.html].

online review

Creating a PR for openamp/openamp-docs will build the new docs and they can
be reviewed in the PR.

desktop review

If you wish to build the documents on the desktop, you can do as follows.

Setup for Ubuntu 22.04:

$ sudo apt update
$ sudo apt install cmake doxygen libhugetlbfs-dev libsysfs-dev
$ sudo apt install python3-pip git
$ git clone --recurse https://github.com/openAMP/openamp-docs.git
$ cd openamp-docs
$ python3 -m pip install -r requirements.txt

To build and view the html documents:

$ make html
$ xdg-open _build/html/index.html

To build and view the pdf:

$ make pdf
$ xdg-open _build/pdf/openamppdf.pdf

Notes:

	The build process currently produces many warnings

	The doxygen content is not included in the pdf

	The doxygen content is not styled like the rest of the html documents

	The doxygen context does not integrate into the menu structure; use the browser back button to get back.

 Doxygen Awesome

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Doxygen Awesome

[image: GitHub release (latest by date)] [https://github.com/jothepro/doxygen-awesome-css/releases/latest]
[image: GitHub] [https://github.com/jothepro/doxygen-awesome-css/blob/main/LICENSE]
[image: GitHub Repo stars]

[image: Screenshot of Doxygen Awesome CSS]

Doxygen Awesome is a custom CSS theme for Doxygen HTML documentation with lots of customization parameters.

Motivation

I really like how the Doxygen HTML documentation is structured! But IMHO it looks a bit outdated.

This theme is an attempt to update the visuals of Doxygen without changing its overall layout too much.

Features

	🌈 Clean, modern design

	🚀 Heavily customizable by adjusting CSS variables

	🧩 No changes to the HTML structure of Doxygen are required

	📱 Improved mobile usability

	🌘 Dark mode support!

	🥇 Works best with doxygen 1.9.1 - 1.9.4 and 1.9.6 - 1.10.0

Examples

Some websites using this theme:

	Documentation of this repository [https://jothepro.github.io/doxygen-awesome-css/]

	wxWidgets [https://docs.wxwidgets.org/3.2/]

	OpenCV 5.x [https://docs.opencv.org/5.x/]

	Zephyr [https://docs.zephyrproject.org/latest/doxygen/html/index.html]

	FELTOR [https://mwiesenberger.github.io/feltor/dg/html/modules.html]

	Spatial Audio Framework (SAF) [https://leomccormack.github.io/Spatial_Audio_Framework/index.html]

	Randolf Richardson’s C++ classes [https://www.randolf.ca/c++/docs/]

	libCloudSync [https://jothepro.github.io/libCloudSync/]

	libsl3 [https://a4z.github.io/libsl3/]

Installation

To use the theme when generating your documentation, bring the required CSS and JS files from this repository into your project.

This can be done in several ways:

	manually copying the files

	adding the project as a Git submodule

	adding the project as a npm/xpm dependency

	installing the theme system-wide

All theme files are located in the root of this repository and start with the prefix doxygen-awesome-. You may not need all of them. Follow the install instructions to figure out what files are required for your setup.

Git submodule

For projects that use git, add the repository as a submodule and check out the desired release:

git submodule add https://github.com/jothepro/doxygen-awesome-css.git
cd doxygen-awesome-css
git checkout v2.3.2

npm/xpm dependency

In the npm ecosystem, this project can be added as a development dependency
to your project:

cd your-project
npm install https://github.com/jothepro/doxygen-awesome-css#v2.3.2 --save-dev

ls -l node_module/@jothepro/doxygen-awesome-css

Similarly, in the xPack [https://xpack.github.io] ecosystem, this project can be added
as a development dependency to an xpm [https://xpack.github.io/xpm/]
managed project.

System-wide

You can even install the theme system-wide by running make install.
The files will be installed to /usr/local/share/ by default,
but you can customize the install location with make PREFIX=/my/custom/path install.

Choosing a layout

There are two layout options. Choose one of them and configure Doxygen accordingly:

	Base Theme
[image:]

 Customization

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Customization

[TOC]

CSS-Variables

This theme is highly customizable because a lot of things are parameterized with CSS variables.

Just to give you an idea of how flexible the styling is, click this button:

 Extensions

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Extensions

[TOC]

On top of the base theme provided by doxygen-awesome.css, this repository comes with Javascript extensions that require additional setup steps to get them running.

The extensions require customizations in the header HTML template.
This is how you can create the default template with Doxygen:

	Create default header template:

doxygen -w html header.html delete_me.html delete_me.css

	Reference the template in your Doxyfile:

HTML_HEADER = header.html

More details on header customization [https://www.doxygen.nl/manual/customize.html#minor_tweaks_header_css]

Dark Mode Toggle {#extension-dark-mode-toggle}

Adds a button next to the search bar to enable and disable the dark theme variant manually:

[image:]{width=250px}

Installation

	Add the required resources in your Doxyfile:

	HTML_EXTRA_FILES: doxygen-awesome-darkmode-toggle.js

	HTML_EXTRA_STYLESHEET: doxygen-awesome-sidebar-only-darkmode-toggle.css
(ONLY required for the sidebar-only theme variant!)

	In the header.html template, include doxygen-awesome-darkmode-toggle.js at the end of the <head> and then initialize it:

<html>
 <head>
 <!-- ... other metadata & script includes ... -->
 <script type="text/javascript" src="$relpath^doxygen-awesome-darkmode-toggle.js"></script>
 <script type="text/javascript">
 DoxygenAwesomeDarkModeToggle.init()
 </script>
 </head>
 <body>

Customizing

Changing the tooltip of the button:

DoxygenAwesomeDarkModeToggle.title = "Zwischen hellem/dunklem Modus wechseln"

Changing Icons. Both Emoji or SVG icons are supported:

DoxygenAwesomeDarkModeToggle.lightModeIcon = '🌞'
// icon from https://fonts.google.com/icons
DoxygenAwesomeDarkModeToggle.darkModeIcon = `<svg xmlns="http://www.w3.org/2000/svg" enable-background="new 0 0 24 24" height="24px" viewBox="0 0 24 24" width="24px" fill="#009793"><g><rect fill="none" height="24" width="24"/></g><g><g><path d="M8.1,14.15C9.77,14.63,11,16.17,11,18c0,0.68-0.19,1.31-0.48,1.87c0.48,0.09,0.97,0.14,1.48,0.14 c1.48,0,2.9-0.41,4.13-1.15c-2.62-0.92-5.23-2.82-6.8-5.86C7.74,9.94,7.78,7.09,8.29,4.9c-2.57,1.33-4.3,4.01-4.3,7.1c0,0,0,0,0,0 c0.01,0,0.01,0,0.02,0C5.66,12,7.18,12.83,8.1,14.15z" opacity=".3"/><path d="M19.78,17.51c-2.47,0-6.57-1.33-8.68-5.43C8.77,7.57,10.6,3.6,11.63,2.01C6.27,2.2,1.98,6.59,1.98,12 c0,0.14,0.02,0.28,0.02,0.42C2.61,12.16,3.28,12,3.98,12c0,0,0,0,0,0c0-3.09,1.73-5.77,4.3-7.1C7.78,7.09,7.74,9.94,9.32,13 c1.57,3.04,4.18,4.95,6.8,5.86c-1.23,0.74-2.65,1.15-4.13,1.15c-0.5,0-1-0.05-1.48-0.14c-0.37,0.7-0.94,1.27-1.64,1.64 c0.98,0.32,2.03,0.5,3.11,0.5c3.5,0,6.58-1.8,8.37-4.52C20.18,17.5,19.98,17.51,19.78,17.51z"/><path d="M7,16l-0.18,0C6.4,14.84,5.3,14,4,14c-1.66,0-3,1.34-3,3s1.34,3,3,3c0.62,0,2.49,0,3,0c1.1,0,2-0.9,2-2 C9,16.9,8.1,16,7,16z"/></g></g></svg>`

All customizations must be applied before calling DoxygenAwesomeDarkModeToggle.init()!

Fragment Copy Button {#extension-copy-button}

Shows a copy button when the user hovers over a code fragment:

[image:]{width=490}

Installation

	Add the required resources in your Doxyfile:

	HTML_EXTRA_FILES: doxygen-awesome-fragment-copy-button.js

	In the header.html template, include doxygen-awesome-fragment-copy-button.js at the end of the <head> and then initialize it:

<html>
 <head>
 <!-- ... other metadata & script includes ... -->
 <script type="text/javascript" src="$relpath^doxygen-awesome-fragment-copy-button.js"></script>
 <script type="text/javascript">
 DoxygenAwesomeFragmentCopyButton.init()
 </script>
 </head>
 <body>

Customizing

The tooltip of the button can be changed:

DoxygenAwesomeFragmentCopyButton.title = "In die Zwischenablage kopieren"

The icon can be changed. It must be an SVG:

DoxygenAwesomeFragmentCopyButton.copyIcon = `<svg ...>`
DoxygenAwesomeFragmentCopyButton.successIcon = `<svg ...>`

All customizations must be applied before calling DoxygenAwesomeDarkModeToggle.init()!

Paragraph Linking {#extension-para}

Provides a button on hover behind every headline to allow easy creation of a permanent link to the headline:

[image:]{width=220}

Works for all headlines and for many documentation section titles.

Installation

	Add the required resources in your Doxyfile:

	HTML_EXTRA_FILES: doxygen-awesome-paragraph-link.js

	In the header.html template, include doxygen-awesome-paragraph-link.js at the end of the <head> and then initialize it:

<html>
 <head>
 <!-- ... other metadata & script includes ... -->
 <script type="text/javascript" src="$relpath^doxygen-awesome-paragraph-link.js"></script>
 <script type="text/javascript">
 DoxygenAwesomeParagraphLink.init()
 </script>
 </head>
 <body>

Customizing

The button tooltip can be changed:

DoxygenAwesomeParagraphLink.title = "Abschnitt verknüpfen"

The icon of the button can be changed. Both plain characters or SVG icons are supported:

DoxygenAwesomeParagraphLink.icon = "¶"

All customizations must be applied before calling DoxygenAwesomeParagraphLink.init()!

Interactive TOC {#extension-toc}

On large screens, the Table of Contents (TOC) is anchored on the top right of the page. This extension visualizes the reading progress by dynamically highlighting the currently active section.

On small screens, the extension hides the TOC by default. The user can open it manually when needed:

[image:]{width=380}

Installation

	Add the required resources in your Doxyfile:

	HTML_EXTRA_FILES: doxygen-awesome-interactive-toc.js

	In the header.html template, include doxygen-awesome-interactive-toc.js at the end of the <head> and then initialize it:

<html>
 <head>
 <!-- ... other metadata & script includes ... -->
 <script type="text/javascript" src="$relpath^doxygen-awesome-interactive-toc.js"></script>
 <script type="text/javascript">
 DoxygenAwesomeInteractiveToc.init()
 </script>
 </head>
 <body>

Customizing

The offset for when a headline is considered active can be changed. A smaller value means that the headline of the section must be closer to the top of the viewport before it is highlighted in the TOC:

DoxygenAwesomeInteractiveToc.topOffset = 45

Hiding the TOC on small screens can be disabled. It is still interactive and can be hidden by the user but will now be open by default:

DoxygenAwesomeInteractiveToc.hideMobileMenu = false

Tabs {#extension-tabs}

@warning Experimental feature! Please report bugs here [https://github.com/jothepro/doxygen-awesome-css/issues].

This extension allows to arrange list content in tabs:

	Tab 1
This is the content of tab 1

	Tab 2
This is the content of tab 2

	it has a list

	with multiple items

Installation

	Add the required resources in your Doxyfile:

	HTML_EXTRA_FILES: doxygen-awesome-tabs.js

	In the header.html template, include doxygen-awesome-tabs.js at the end of the <head> and then initialize it:

<html>
 <head>
 <!-- ... other metadata & script includes ... -->
 <script type="text/javascript" src="$relpath^doxygen-awesome-tabs.js"></script>
 <script type="text/javascript">
 DoxygenAwesomeTabs.init()
 </script>
 </head>
 <body>

Usage

Each list that is supposed to be displayed as tabs has to be wrapped with the tabbed CSS class.
Each item in the list must start with an element that has the class tab-title. It will then be used as tab title.

<div class="tabbed">

- <b class="tab-title">Tab 1 This is the content of tab 1
- <b class="tab-title">Tab 2 This is the content of tab 2

</div>

Page Navigation {#extension-page-navigation}

@warning Experimental feature! Please report bugs here [https://github.com/jothepro/doxygen-awesome-css/issues].

To allow the user to easily navigate from one document to another, “Next” and “Previous” buttons can be added at the end of a Markdown document.

Installation

The feature is shipped inside the default doxygen-awesome.css. No additional stylesheets or scripts need to be added.

Usage

The following conditions must be met for the feature to work properly:

	The navigation must be inside a Markdown table with 1-2 columns.

	The alignment of the column defines the alignment of the arrow on the navigation button.

	the table must be wrapped inside a <div> with the class section_buttons.

	Code

<div class="section_buttons">

Previous	Next
[Home](README.md)	[Customization](customization.md)

</div>

	Result

Previous	Next
[Home](README.md)	[Customization](customization.md)

	Previous

	Next

	Home

	Customization

 Tips & Tricks

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Tips & Tricks

[TOC]

Diagrams with Graphviz {#tricks-graphviz}

To get the best-looking class diagrams for your documentation, generate them with Graphviz as vector graphics with transparent background:

Doxyfile
HAVE_DOT = YES
DOT_IMAGE_FORMAT = svg
DOT_TRANSPARENT = YES

In case INTERACTIVE_SVG = YES is set in the Doxyfile, all user-defined dotgraphs must be wrapped with the interactive_dotgraph CSS class for them to be rendered correctly:

<div class="interactive_dotgraph">

\dotfile graph.dot

</div>

@note Both the default overflow scrolling behavior in this theme and the interactive editor enabled by INTERACTIVE_SVG are unsatisfying workarounds IMHO. Consider designing your graphs to be narrow enough to fit the page to avoid scrolling.

Disable Dark Mode {#tricks-darkmode}

If you don’t want the theme to automatically switch to dark mode depending on the browser preference,
you can disable dark mode by adding the light-mode class to the HTML tag in the header template:

<html xmlns="http://www.w3.org/1999/xhtml" class="light-mode">

The same can be done to always enable dark mode:

<html xmlns="http://www.w3.org/1999/xhtml" class="dark-mode">

@warning This only works if you don’t use the dark-mode toggle extension.

Choosing Sidebar Width {#tricks-sidebar}

If you have enabled the sidebar-only theme variant, make sure to carefully choose a proper width for your sidebar.
It should be wide enough to hold the icon, project title and version number. If the content is too wide, it will be
cut off.

html {
 /* Make sure sidebar is wide enough to contain the page title (logo + title + version) */
 --side-nav-fixed-width: 335px;
}

The chosen width should also be set in the Doxyfile:

Doxyfile
TREEVIEW_WIDTH = 335

Formatting Tables {#tricks-tables}

By default tables in this theme are left-aligned and as wide as required to fit their content.
Those properties can be changed for individual tables.

Centering

Tables can be centered by wrapping them in the <center> HTML tag.

	Code

<center>
 | This table | is centered |
 |------------|----------------------|
 | test 1 | test 2 |
</center>

	Result

 | This table | is centered |
 |------------|----------------------|
 | test 1 | test 2 |

Full Width

To make tables span the full width of the page, no matter how wide the content is, wrap the table in the full_width_table CSS class.

@warning Apply with caution! This breaks the overflow scrolling of the table. Content might be cut off on small screens!

	Code

<div class="full_width_table">
 | This table | spans the full width |
 |------------|----------------------|
 | test 1 | test 2 |
</div>

	Result

 | This table | spans the full width |
 |------------|----------------------|
 | test 1 | test 2 |

	Previous

	Next

	Customization

	Example [https://jothepro.github.io/doxygen-awesome-css/class_my_library_1_1_example.html]

 Application Services Sub-Group

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Application Services Sub-Group

Introduction

This sub-group covers the application space that sits on top of OpenAMP and describes higher level services for

	file sharing

	proxy and/or forwarding of IP ports

	debug proxy

	high level IPC APIs for send-receive-reply / byte streams / message-based connections / pub/sub

	IPC server registration and client binding

	application partitioning using RPCs, C & non-C languages, canonical format

	bare metal APIs (using RPC) for stdio, socket IO, other APIs

Communications

Mailing list

We have a Mailman list for app-services discussions. You can find info about it, reach the link to the archives, and subscribe/unsubscribe here [https://lists.openampproject.org/mailman/listinfo/app-services].

Meetings

Check out the meeting notes for the Application Services meetings on the OpenAMP Meeting Notes page.

Documentation

Placeholder

Placeholder for other documentation here

Future work

Check out the future work list for the Application Services sub-group in the Higher Level Services Sub-Group Future Work section.

 OpenAMP CI Sub-Group

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

OpenAMP CI Sub-Group

	CI regression for every push request from OpenAMP repo

	Enabling OpenAMP tests for different users to run on different platforms

 System Device Tree Sub-Group

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

System Device Tree Sub-Group

Introduction

Todays heterogeneous SoCs are very hard to configure. Issues like which cores, memory and devices belongs to which operating systems, hypervisors and firmware is done in an ad-hoc, error prone way. System Device Trees will change all that by extending todays device trees, used by Linux, Xen, uboot, etc. to describe the full system and also include configuration information on what belongs where.

Communications

Mailing list

We have a Mailman list for system-dt discussions. You can find info about it, reach the link to the archives, and subscribe/unsubscribe here [https://lists.openampproject.org/mailman3/lists/system-dt.lists.openampproject.org/]

Meetings

Check out the meeting notes for the System Device Tree meetings on the OpenAMP Meeting Notes page.

Documentation

System DT intro presentation given at Linaro Connect SAN19

	Video [https://www.youtube.com/watch?v=n6NYRYdOIJU]

	Slides [https://connect.linaro.org/resources/san19/san19-115/]

Placeholder for Stefano to populate

Placeholder for other documentation here

Lopper

Lopper is a device tree manipulation tool that has been created to provide data driven manipulation and transformation of System Device Trees into any number of output formats, with an emphasis on conversion to standard device trees.

The source code and information can be found at: https://github.com/devicetree-org/lopper/

Future work

Check out the future work list for the System Device Tree sub-group in the System Device Tree Sub-Group Future Work section

 Inclusive Language and Biased Terms Sub-Group

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Inclusive Language and Biased Terms Sub-Group

This proposal from Bill Mills was approved at the 10/22/21 OpenAMP TSC:

replace master with main

github has special case logic to make this easier: https://github.com/github/renaming

remoteproc context

	“slave” should be “remote processor”

	“master” should be “remoteproc host”

virto context

virtio spec uses “device” and “driver”. suggest we use “virtio device” and “virtio driver”

Examples of devices:

	vitioblk device

	virtio network interface

For today’s remoteproc rpmsg, Linux is always the driver side.

Some virtio “devices” are not very device like and instead are more like services. Alternative for such cases

	“application service” and “application client”

Examples:

	vsock: service is the one that calls accept on the socket

	p9fs: service is the side that has the filesystem

Note that a remote processor can host a service and be a client at the same time. The terminology is per service.

 Current Work

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Current Work

Contents:

	Remoteproc Sub-Group
	Introduction

	Communications

	Documentation

	Future work

	System Device Tree Sub-Group
	Introduction

	Communications

	Documentation

	Future work

	Application Services Sub-Group
	Introduction

	Communications

	Documentation

	Future work

	Inclusive Language and Biased Terms Sub-Group
	replace master with main

	remoteproc context

	virto context

	OpenAMP CI Sub-Group

	IPC Sub-Group

	System Reference / End-to-End Example Sub-Group
	What is OpenAMP System Reference / End-to-end example?

	Communications

	Repository

	Documentation

	Samples and demos

	Milestones

	Future work

	Older Topics
	Formation of OpenAMP project

 IPC Sub-Group

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

IPC Sub-Group

	Shared memory support to use DMA buffer in Linux userspace

 Older Topics

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Older Topics

Formation of OpenAMP project

	Launched as a Linaro Community Project at Linaro Connect SAN19 [https://www.openampproject.org/news/openamp-project-joins-the-linaro-community-projects-division/]

 Remoteproc Sub-Group

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Remoteproc Sub-Group

Introduction

Bill to revise summary about this group The OpenAMP remoteproc sub-group (A.K.A. “OpenAMP Classic”) works on the original parts of OpenAMP, focusing on open-amp, libmetal, remoteproc, rpmsg, virtio.

Communications

Mailing list

We have a Mailman list for OpenAMP Remoteproc sub-group discussions. You can find info about it, reach the link to the archives, and subscribe/unsubscribe here [https://lists.openampproject.org/mailman/listinfo/openamp-rp].

Meetings

Check out the meeting notes for the OpenAMP Remoteproc meetings on the OpenAMP Meeting Notes page. The cadence is every 2 weeks on Thursday mornings at 11am Eastern Time. Join the openamp-rp mailing list (see above) for the latest about the upcoming calls.

Documentation

Placeholder for Bill to populate

Placeholder for other documentation here

OpenAMP Introduction from Linaro Connect HKG18

Slides [http://connect.linaro.org.s3.amazonaws.com/hkg18/presentations/hkg18-411.pdf]

Future work

Check out the future work list for the OpenAMP Remoteproc sub-group in the Remoteproc Sub-Group Future Work section.

 System Reference / End-to-End Example Sub-Group

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

System Reference / End-to-End Example Sub-Group

What is OpenAMP System Reference / End-to-end example?

This working group aims to put together end-to-end system reference material showcasing all the different aspects of OpenAMP, on multiple vendor platforms.

Communications

	To sign up for the mailing list and to see the archives, visit this page [https://lists.openampproject.org/mailman/listinfo/openamp-system-reference] BROKEN LINK

	
	Meetings: Small group who is working on the project is meeting meeting weekly on Wednesday during Aug-Oct 2021 & then will decide on frequency.
	
	Reach out on the Mailing list [https://lists.openampproject.org/mailman/listinfo/openamp-system-reference] BROKEN LINK if you need info about this.

	Project Meeting Notes

Repository

GitHub repository openamp-system-reference [https://github.com/OpenAMP/openamp-system-reference]

Documentation

WIP documentation folder on Google Drive [https://drive.google.com/drive/u/0/folders/1dJByUkTNPOczMwB5uNUSKSf1mzQbAjQt] (Note: Google doc access is currently restricted to working group members. Will publish documents once they are sufficiently ready)

Samples and demos

Please refer to Samples and demos page.

Milestones

Future work

Efforts

	Baremetal-baremetal

	RTOS-RTOS

High level plan for Xilinx Software Stack

	QEMU & initial doc – Mid Sept.

	Userspace & kernel space demos – Sept end

	Hardware demo – End - Oct.

	System-dt flow (Without using Xilinx tools) – End-Nov

	Advanced app – End-Jan

	Completely upstream flow – (Based on When Xilinx driver is merged in upstream kernel)

 System Device Tree Sub-Group Future Work

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

System Device Tree Sub-Group Future Work

2019-10-17 - This list (to be populated) covers topics for the OpenAMP System Device Tree sub-group to discuss what to work on at their sub-group meetings. This sub-group welcomes participants from other areas of Device Tree beyond OpenAMP as well, such as DeviceTree.org, Device Tree Evolution projects. OpenAMP Project is hosting this discussion because of its cross-functional nature.

 Hardware Description

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Hardware Description

Problems

	
	Need to communicate HW details (addresses, topologies, …) to SW subsystems during build
	
	Both at system level (complete HW including all CPUs) and subsystem level

	Tool to create subsystems with assigned devices out of system level info

	
	Need to communicate HW details during runtime
	
	Device trees used by Linux, Xen, etc.

	How to communicate to coprocessors (remoteproc) what devices it has?

	
	Need tools to create static config data (#defines, .h, .c files) from HW description
	
	Zephyr working on this. Need general solution.

	
	Need compact format for runtime use cases
	
	DTB is not very compact. Using strings instead of labels, no compression

Potential solutions

	
	Come up with standard, humanly readable, HW description format for usage during build
	
	Possible candidates include extended Device Trees, IPExact, …

	A “System Level Device Tree” would add another level with multiple CPUs and mappings

	
	Come up with standard compressed HW description
	
	Potential candidate is CBOR

Others interested in this problem?

 HMM (Heterogeneous Memory Management)

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

HMM (Heterogeneous Memory Management)

Use Cases

	pcie/ccix endpoint side memory pools

	embedded soc e.g. dedicated media buffer alloc pool

zone device and memory hotplug (on arm64)

	arch pte devmap bit options (mair bits, pte_none?, pte_special?)

	device pluggable private and public memory

hmm address space mirroring w/ rproc

	tie into vfio-map shmem model w/ remoteproc instances?

	could we somehow do better than dma migration w/ pgtable remapping?

	(opt.) tie into vfio-bind shmem model needs intg. iommu fault handling

 Standardizing Hypercalls Sub-Group

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Standardizing Hypercalls Sub-Group

2019-10-17: This list (to be populated) covers topics for the OpenAMP Standardizing Hypercalls (sub-group to decide what name they want to use) sub-group to discuss what to work on at their sub-group meetings.

 Future Work

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Future Work

Contents:

	Remoteproc Sub-Group Future Work

	Higher Level Services Sub-Group Future Work

	System Device Tree Sub-Group Future Work

	Standardizing Hypercalls Sub-Group

	HMM (Heterogeneous Memory Management)

	Hardware Description

 Remoteproc Sub-Group Future Work

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Remoteproc Sub-Group Future Work

This list (needs update) covers topics for the “OpenAMP remoteproc” sub-group to discuss and work on. This sub-group covers areas such as remoteproc, rpmessage, virtio, big buffers, etc.

The sections below should include an short abstract and links to prior discussion etc. More detailed information should be added on a new wiki page and a link to that page should be added to the topic here.

HW description (Xilinx, TI, ST, Mentor)

	How to describe HW to System SW – Complete HW vs. OS centric subsystems – DT, IPExact. More info can be found here.

	Q: 2019/11/7, Is this the same as SystemDT and should be moved to that group, or are there rp specific topics?

System Resource Management – (ST, Xilinx, TI, Cypress)

	How to configure and assign resources and peripherals to coprocessors

	Complications include clock and power domain control, system firewall and/or IOMMU configuration

	Some of this gets easier if both Linux and the remote processor are using a central system controller for clock. power, and peripheral access control like SCMI or TISCI

OpenAMP project support for Virtio spec (Xilinx, TI, ST, Mentor)

	Packed vrings, indirect descriptors, …

	Virtio device handshake improvements

	
	Use of existing virtio drivers (ex: virtblk, virtnet, virtcon) from remoteprocs
	
	remoteproc could be frontend or backend (ex:could be the block user or block device)

	Q: 2019/10/7, should this be its own topic and leave this one to be just virtio mechanics?

Remoteproc Virtio driver

Remoteproc framework is covering coprocessor management (init, load, start, stop, crash, dump…), but also provides functions for vring support. That complicates the device management, mainly the parent/child relation and the memory region assignment. Idea is to create a virtrproc like virtmem or virtcon and rely on DT definition for driver probing.

	ST has some patches to share

Big data – (Xilinx, TI, ST)

	Rpmsg buffer management

	Zero copy and big buffer

	Heterogeneous Memory Management. More info can be found here BROKEN LINK

	libmetal shared memory allocation: https://github.com/OpenAMP/libmetal/issues/70

	sub topics include allocation, mapping, IOMMU, remoteproc MMU, cache maintenance, address translation

	DMA-BUF heaps seems to be the obvious choice for allocation API now

Kernel remoteproc CI patches - Loic

The rate of remoteproc/rpmsg patch review/acceptance seems slow, what can we do to accelerate it? This page has a lot of stuff (and there is a lot more waiting as 2nd tier of features). (This is not about maintainer bashing; it is about working better together.)

	
	more mailing list discussion
	
	patch review should be done on kernel rpmsg list not openamp-rp list

	openamp-rp list can be used for broader arch discussion and Linux/RTOS interaction

	more reviewed by/acked by/tested by cooperation

	remoteproc CI loop should help

OpenAMP kernel staging tree - Bill

	Create an OpenAMP github repo for linux to collect all carried and WIP patches in one place

	This is not to create a product, it is to more easily see what problem everyone is working around

	Suggestion is to have a branch per vendor where they collect all the remoteproc related patches as a rebase branch

	
	Extra: Some have suggested trying to merge all the vendor work together ahead of getting to mainline
	
	However this step seems controversial, lets not focus on that, at least for now

	
	Alternative: just collect a list of links to the vendor trees
	
	This is definitely easier but it can be a lot of work to find the relevant patches

Remoteproc/rpmsg CI & regression test – (Xilinx, TI, ST)

Create a CI environment that can build both RTOS and Linux side and test existing and new operations.

	QEMU based AMP SOC highly desired as target

	Should be usable in cloud CI (travis etc) and on individual developers desktop

	V0.1: Start with QEMU fork and any publicly reproducible build

	V1: Add build flow for easy developer mode

	Expand to board farm as second phase

	Nice to have: use upstream QEMU

There is a Docker container (work in process), that runs an instance of Xilinx QEMU that supports up to 4 A-53 cores and 2 R5 cores. This boots Linux, loads the firmware into the R5 via remoteproc, and can run the OpenAMP rpmsg echo test. https://hub.docker.com/repository/docker/edmooring/qemu

Secure coprocessor support – Loic

Add a generic rproc driver to support secure and isolated coprocessor thanks to some trusted services based on OPTEE or other Trusted OS. Standard flow will be to load coprocessor firmware and its associated signature somewhere in secure/non-secure shared memory and then to request secure world to load, authenticate coprocessor image and then start coprocessor Some tasks:

	Define a standard file format for firmware to authenticate (is ELF still relevant or should we rely on PKCS11 header like to integrate signature ?)

	Define TA API to control secure coprocessor (load, start, stop…)

	How to manage resource table in that case? Should we rely on some secure services or should we consider it as input for communication link (aka rpmsg) configuration between coprocessor and Linux kernel (and in that case could stay non-secure)

	Q: Can we make this generic enough to be used when coproessor is to be owned/trusted by a hypervisor instead of the secure world

Linux RPMSG only mode - Bill (TI,)

RPMSG should be usable in the Linux kernel when Linux will never be the life-cycle manager for that coprocessor.

In many modern systems the Linux kernel is not the most trusted entity in the system. Sometimes a given coprocessor is loaded and managed by another entity that is more secure (ex: secure world), more safe (ex: dual lock-set R5), or more trusted (hypervisor). In these system Linux may never be the one that loads/starts/restarts/crash dumps the coprocessor but Linux still needs to use a rpmsg channel and perhaps other virtio based communication channels.

	Need to tell remoteproc that it is not the controller

	Need to find the resource table in use

	remoteproc still needs to do: IOMMU mapping, PA to DA, etc

	Q: Can we make a generic remoteproc that is usable for this case that can handle some (but not all) SOCs?

	This model brings up many cases for robustness

RPMSG robustness - Bill (TI,ST)

	If coprocessor goes down and comes backup, Linux needs to recognize that and re-establish rpmsg communication

	If Linux goes down (crash/shutdown) and restarts while the coprocessor stays running, coprocessor needs to recognize that and re-establisg rpmsg communication

	
	The restart should be advertised to the applications not hidden from them. Applications should take recovery actions themselves.
	
	On Linux this would probably mean an error code from the existing handle and a need to open a new one (or a issue a reset ioctl)

Early coprocessor boot – late attach, detach - Loic (ST,TI)

Late attach is different from rpmsg only mode in that once Linux comes up, it becomes the life cycle controller for the coprocessor.

	Linux should have the option to stay with the firmware already loaded on the coprocessor.

	Linux could later stop or reload the coprocessor with different firmware

	Linux may take ownership of crashdump and debug logs

	Late attach could require that matching firmware file exists in the filesystem, this would make finding the resource table easier

	Or late attach could require to know where firmware resource table has previously been loaded as would be required in RPMSG only mode

Detach means that Linux stops becoming the life cycle owner. This could happen while Linux is running or as part of Linux crash/shutdown.

Early booted processor patch sent on ML: https://lore.kernel.org/patchwork/patch/1147726/

Lifecycle management and Trusted & Embedded Base Boot Requirement (T/E-BBR) – Etsam

Lifecycle management with Linux remote – Etsam

The life cycle management of Linux is required in scenarios where it provides the rich execution environment and certified software environment (e.g on low end CPUs such as cortex M or R) is the system master and responsible to start/stop/recover Linux. The intent here is to cover the driver architecture (e.g. remoteproc replacement) and device tree bindings for remote Linux. No plan to cover the Linux bootstrapping and RPMSG remote mode operation. They can be treated as separate topics. Linux will still assumed to be the RPMsg master.

Rpmsg protocol documentation for remote – Etsam

The RPMSG framework master side protocol is well manifested in Linux upstream and new masters (e.g. OpenAMP) can be written using it as a reference. However, there is no standard Doc/Implementation for remote which often leads to problematic protocol scenarios. For instance, consider the two cases below:

	
	At what point VDEV Resource is initialized by the Master, specially when the vrings are dynamically allocated?
	
	Conversely, at what point remote should access that vdev resource? Consider the case where vdev resource is accessed by the remote right after boot up, assumption here is that it is initialized by the master before starting the remote. This worked for kernel v3.18 , however, it is broken for v4.9 (may be for others as well) where the vring addresses are populated after remote is booted. For latter, this leads to race condition and sometimes remote ends up accessing uninitialized vdev resource. Apparently, the correct point to access vdev resource is after vdev status field (DRIVER_OK) is updated by the master.

	
	When to send the Name service announcement?
	
	In response to first kick from the master: This works if remote is up and running. What if kick is sent and remote is not yet operational? It will miss the kick and consequently NS will not be sent.

	In response to VDEV status update (DRIVER_OK). Will work if remote comes up after the first kick. The status will still be in the shared memory and can be used to send the NS.

The foolproof approach would be to use both kick and VDEV status to send the NS. This point was found after trial and error.

It is required to document all such scenarios i.e. all master actions and expected response from the remote, to enable seamless operation with different remotes.

MCU – MCU issues, rpsmg only - Mark

	
	libopenamp example of rpmsg only
	
	Does it exist, are there any remaining issues?

	target for CI loop

	how big is it? Measure as regression test

	
	MCU boot first - late-attach
	
	Crash recovery

	
	Are there MISRA issues with libopenamp?
	
	Is malloc required? Can this be easily mapped to something more static

	
	“Big” Data in context of MCU to MCU (same SOC)
	
	zero-copy?

	
	OpenAMP improvement
	
	Libmetal rework to be continued

	Integrates last feedbacks coming from Nordic benchmark

	Reduce memory footprint

	Stack usage

	rpmsg-lite: anything missing from libopenamp?

64 bits support - Clément

	
	64 bits support in elf file, see https://patchwork.kernel.org/patch/11175161/
	
	Elf 64 files are needed for 64 bits processors

	
	64 bits addresses in resources table
	
	Currently, addresses are only on 32bits, this is really limitating for 64bits

	
	64 bits features in vdev declaration
	
	Virtio Features are now using 64 bits. Without this support, we are tied to legacy 32bits features.

	Need to switch to at least 64 bits and provisioned more bits for future evolution

Misc I/O over VirtIO/RPMSG - Loic, Bill

	Put the “IO” in VirtIO

	
	Virtual UART
	
	ST has patches

	should this be full UART control (baud rate, HW flow control, RI/DCE/DTE/CTS/RTS) or just a communication channel

	Is Linux the device or the user?

	example: MCU wants to send console messages to Linux for logging

	example: MCU owns a physical UART but wants Linux to use it.

	
	Virtual I2C
	
	ST has some patches

	exmaple: MCU owns phy I2C with multiple devices, presents virtual I2C for to Linux so it can use some but not all of the devices

	
	Virtual SPI
	
	ST has some patches

	Virtual GPIO

	
	Virtual register bank
	
	via: regmap

	Can be used on its own or as the base level of some of the above (GPIO seems obvious)

	Should these be over RPMSG, direct over virtio, or both?

Reference: ST Presentation at ELC-E 2019, https://elinux.org/images/6/63/ELC_EU19_rpmsg.pdf

Improve Coprocessor debug capabilities - Loic

Today rproc framework offers access to a virtual trace file (circular buffer filed by coprocessor) which limit coprocessor debug capabilities. Tracks to explore:

	How to store coprocessor traces in a log file (syslog like) to improve trace depth?

	How to get same timestamp between Linux and coprocessors to correlate trace

	How to control coprocessor debug infrastructure (coresight?)

	Is it possible to debug coprocessor firmware thanks to GDB/GDB server over rpmsg or mailbox?

	How to avoid clashing with external JTAG debugger (RPMSG only mode may help here)

Past presentations and TODO lists

	
	TI presentation on TODO list from 2017
	
	https://github.com/OpenAMP/openamp.github.io/blob/master/docs/linaro-2017/OpenAMP-TI-Roadmap.pdf

	
	ST presentation from 2018 on short term TODO list
	
	https://github.com/OpenAMP/openamp.github.io/blob/master/docs/linaro-2018hkg/OpenAMP-short-term-topcis-st.pdf

	
	Xilinx presentation from 2017 on Intro
	
	https://github.com/OpenAMP/openamp.github.io/blob/master/docs/linaro-2017/OpenAMP-Intro-Feb-2017.pdf

	
	TI presentation from 2018 on Big Data and robustness, IPC only and life cycle
	
	https://github.com/OpenAMP/openamp.github.io/blob/master/docs/linaro-2018hkg/OpenAMP-Buffer-Exchange.pdf

	
	TI presentation from 2017 on coprocessor memory types and howto handle
	
	https://github.com/OpenAMP/openamp.github.io/blob/master/docs/linaro-2017/OpenAMP-memory-types.pdf

 Higher Level Services Sub-Group Future Work

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Higher Level Services Sub-Group Future Work

2019-10-17 - This list (to be populated) covers topics for the OpenAMP Higher Level Services (sub-group to decide what name they want to use) sub-group to discuss what to work on at their sub-group meetings. This sub-group covers areas such as Proxy, eRPC, WindRiver islet.

 Hypervisorless Virtio / ZCU102

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Hypervisorless Virtio / ZCU102

Hypervisorless virtio build environment for Xilinx ZCU102 with Petalinux and Zephyr as auxiliary runtime

This repository includes the infrastructure required to build and deploy a hypervisorless virtio environment on Xilinx ZCU102 (QEMU) with PetaLinux running on Cortex A53 and Zephyr running on Cortex R5.

The physical machine monitor (PMM) which includes the virtio back-ends runs on PetaLinux and communicates with the Zephyr auxiliary runtime over shared memory.

Notes:

	A complete build will require at least 34 GB of free disk space.

	These build instructions have been validated on Ubuntu 20.04.

More information on Hypervisorless virtio is available here: https://www.openampproject.org/news/hypervisorless-virtio-blog/

Prerequisites

Host tools:

sudo apt install python3-sphinx qemu-user qemu-user-static kpartx libpixman-1-dev libssl-dev ca-certificates apt-transport-https build-essential

Zephyr prerequisites (reference: https://docs.zephyrproject.org/latest/getting_started/index.html)

wget https://apt.kitware.com/kitware-archive.sh
sudo bash kitware-archive.sh
sudo apt install --no-install-recommends git cmake ninja-build gperf \
 ccache dfu-util device-tree-compiler wget \
 python3-dev python3-pip python3-setuptools python3-tk python3-wheel xz-utils file \
 make gcc gcc-multilib g++-multilib libsdl2-dev
pip3 install --user -U west
echo 'export PATH=~/.local/bin:"$PATH"' >> ~/.bashrc
source ~/.bashrc

Others:

Download ZYNQMP common image v2020.2 from https://www.xilinx.com/member/forms/download/xef.html?filename=xilinx-zynqmp-common-v2020.2.tar.gz

Download ZCU102 BSP v2020.2 from https://www.xilinx.com/member/forms/download/xef.html?filename=xilinx-zcu102-v2020.2-final.bsp

Update the XLNX_COMMON_PACKAGE and XLNX_ZCU102_BSP paths in build.sh

Building hypervisorless virtio artifacts for ZCU102

env HVL_WORKSPACE=/home/dan/workspaces/hvlws bash build.sh

The build.sh build script clones the following source repositories:

	https://github.com/Xilinx/qemu.git - branch xilinx-v2021.1

	https://github.com/Xilinx/linux-xlnx.git - branch xilinx-v2020.2

	https://github.com/dgibson/dtc.git

	https://github.com/OpenAMP/kvmtool.git - branch hvl-integration

	https://github.com/OpenAMP/openamp-zephyr-staging.git - branch virtio-exp

Build artifacts

	QEMU Xilinx is installed in $HVL_WORKSPACE/qemu_inst/ and is used to set up the ZCU102 emulation infrastructure.

	A Linux kernel image is based the configuration from util/config_hvl is built and copied to $HVL_WORKSPACE/tftp/

	An updated device tree machine model which includes util/system-user.dtsi is compiled and copied to $HVL_WORKSPACE/tftp/

	An SD card file system image based on xilinx-zcu102-2020.2/pre-built/linux/images/petalinux-sdimage.wic is copied as $HVL_WORKSPACE/linux-sd.wic

	Binaries to be copied in the file system image are placed $HVL_WORKSPACE/target: Linux kernel modules, ZCU102 mailbox driver module, a Zephyr application named zephyr.elf based on the rng_net hypervisorless virtio sample and the Physical Machine Monitor based on kvmtool and its dependencies.

The files in $HVL_WORKSPACE/tftp/ are used during the boot phase.

Finalizing the setup

At the end of its execution the build.sh script prints the remaining set of commands to complete the file system setup.

E.g.

sudo kpartx -av /home/dan/workspaces/hvlws/linux-sd.wic
export SDLOOPDEV=`basename $(losetup |grep /home/dan/workspaces/hvlws/linux-sd.wic|awk '{print $1}')`
sudo mount /dev/mapper/${SDLOOPDEV}p2 /home/dan/workspaces/hvlws/mnt
sudo cp -a /home/dan/workspaces/hvlws/target/* /home/dan/workspaces/hvlws/mnt/
sudo chmod +x /home/dan/workspaces/hvlws/mnt/chr_setup.sh
sudo chroot /home/dan/workspaces/hvlws/mnt/ bash -c /chr_setup.sh
sudo umount /home/dan/workspaces/hvlws/mnt
sudo kpartx -dv /home/dan/workspaces/hvlws/linux-sd.wic

Please inspect the commands and, if satisfied they will not cause your system to melt down, run them.

Runtime

The build script prints a set of commands which can be used to run the QEMU emulator for ZCU102:

E.g.

QEMU PMU

rm /tmp/qemu-memory-_*

/home/dan/workspaces/hvlws/qemu_inst/bin/qemu-system-microblazeel -M microblaze-fdt -nographic -dtb /home/dan/workspaces/hvlws/xilinx-zcu102-2020.2/pre-built/linux/images/zynqmp-qemu-multiarch-pmu.dtb -kernel /home/dan/workspaces/hvlws/xilinx-zcu102-2020.2/pre-built/linux/images/pmu_rom_qemu_sha3.elf -device loader,file=/home/dan/workspaces/hvlws/xilinx-zcu102-2020.2/pre-built/linux/images/pmufw.elf -machine-path /tmp

PETALINUX (A53)

/home/dan/workspaces/hvlws/qemu_inst/bin/qemu-system-aarch64 -M arm-generic-fdt -dtb /home/dan/workspaces/hvlws/xilinx-zcu102-2020.2/pre-built/linux/images/zynqmp-qemu-multiarch-arm.dtb -device loader,file=/home/dan/workspaces/hvlws/xilinx-zcu102-2020.2/pre-built/linux/images/bl31.elf,cpu-num=0 -global xlnx,zynqmp-boot.cpu-num=0 -global xlnx,zynqmp-boot.use-pmufw=true -machine-path /tmp -net nic -net nic -net nic -net nic -net user,tftp=/home/dan/workspaces/hvlws/tftp,hostfwd=tcp::30022-:22 -serial mon:stdio -m 4G --nographic -serial telnet:localhost:4321,server,wait=off -echr 2 -drive file=/home/dan/workspaces/hvlws/linux-sd.wic,if=sd,format=raw,index=1 -device loader,file=/home/dan/workspaces/hvlws/xilinx-zcu102-2020.2/pre-built/linux/images/u-boot.elf

U-Boot configuration:

setenv bootargs "earlycon clk_ignore_unused root=/dev/mmcblk0p2 ro rootwait earlyprintk debug uio_pdrv_genirq.of_id=generic-uio";
dhcp 200000 Image; dhcp 100000 dtb.dtb;
setenv initrd_high 78000000; booti 200000 - 100000;

After booting, Linux on A53 can also be accessed as:
telnet localhost 4321

Zephyr (R5)

telnet localhost 4321

The paths are specific to your hypervisor-less virtio workspace.

You will need 4 terminals (referered to as T1 to T4) in the following instructions. The commands in each terminal section need to be run in the corresponding terminal.

T1: QEMU PMU

	Run the commands in the QEMU PMU section

T2: PetaLinux

	Run the command in the PETALINUX (A53) section

Once the U-Boot autoboot prompt is displayed, press Enter to stop the boot sequence.

Hit any key to stop autoboot: 0

	Run the commands in the U-Boot configuration section U-Boot commands to boot PetaLinux

	Once the login prompt xilinx-zcu102-2020_2 login: is displayed, login using root / root.

These remaining commands setup the inter-CPU cluster infrastructure, prepare the start auxiliary runtime (i.e. Zephyr) and start the physical memory manager (PMM).

ip tuntap del mode tap tap0;ip tuntap add mode tap user $USER tap0;ifconfig tap0 192.168.200.254 up
cd /hvl/
insmod user-mbox.ko
cp /hvl/zephyr.elf /lib/firmware/
echo zephyr.elf >/sys/class/remoteproc/remoteproc0/firmware

/hvl/lkvm run --debug --vxworks --rsld --pmm --debug-nohostfs --transport mmio --shmem-addr 0x37000000 --shmem-size 0x1000000 --cpus 1 --mem 128 --no-dtb --debug --rng --network mode=tap,tapif=tap0,trans=mmio --vproxy

If the lkvm run command fails with an error message similar to “Fatal: Guest init image not compiled in”, please rerun it. The cause of this issue is under investigation.

T3: Zephyr serial console

telnet localhost 4321

T4: PetaLinux SSH session

ssh -oHostKeyAlgorithms=+ssh-rsa root@127.0.0.1 -p 30022

echo start >/sys/class/remoteproc/remoteproc0/state

In terminal T3 the Zephyr boot log should be visible:

device virtio1 @0x110e0
iobase 77000200
VIRTIO 4d564b4c:00000001
device virtio0 @0x110f8
iobase 77000000
VIRTIO 4d564b4c:00000004
virtio_rng_init()
*** Booting Zephyr OS build v2.7.99-776-gc69f841ea165 ***
Board: qemu_cortex_r5
random device is 0x11110, name is virt-rng
 0xaf
 0xd5
 0xcf
 0xba
 0xea
 0xfb
 0x89
 0x65
 0xc4
main:104 - get_entropy test passed

You can now interact with the Zephyr system using shell commands.

E.g. Show the network interface configuration on Zephyr and ping the back-end (PetaLinux) runtime.

uart:~$ device list
devices:
- sys_clock (READY)
- UART_1 (READY)
- rpu_0_ipi (READY)
- virtio1 (READY)
- virtio0 (READY)
- virt-rng (READY)
 requires: virtio0
- virt-net (READY)
 requires: virtio1
uart:~$ net iface

Interface 0x78109a70 (Ethernet) [1]
===================================
Link addr : 00:00:00:00:00:00
MTU : 1500
Flags : AUTO_START,IPv4
Ethernet capabilities supported:
IPv4 unicast addresses (max 1):
 192.168.200.2 manual preferred infinite
IPv4 multicast addresses (max 1):
 <none>
IPv4 gateway : 0.0.0.0
IPv4 netmask : 255.255.255.0
DHCPv4 lease time : 0
DHCPv4 renew time : 0
DHCPv4 server : 0.0.0.0
DHCPv4 requested : 0.0.0.0
DHCPv4 state : disabled
DHCPv4 attempts : 0

uart:~$ net ping -c 10 192.168.200.254
PING 192.168.200.254
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=0 ttl=64 time=1920 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=1 ttl=64 time=486 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=2 ttl=64 time=530 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=3 ttl=64 time=525 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=4 ttl=64 time=420 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=5 ttl=64 time=670 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=6 ttl=64 time=502 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=7 ttl=64 time=545 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=8 ttl=64 time=499 ms
28 bytes from 192.168.200.254 to 192.168.200.2: icmp_seq=9 ttl=64 time=454 ms

 Hypervisorless virtio - quick reference

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Hypervisorless virtio - quick reference

The goal of the “Hypervisorless virtio” initiative is to prototype and define a framework for using virtio as a communication infrastructure between runtimes deployed on heterogeneous CPU clusters (e.g.Cortex A53 <-> Cortex R5).

At its core, virtio makes a set of assumptions which are typically fulfilled by a virtual machine monitor which has complete access to the guest memory space. Removing the hypervisor means:

	Hardware notifications are used instead of VM-exits

	Feature negotiation is replaced by predefined feature lists (optional).

	Virtio can be used without virtualization hardware or virtualization enabled.

	The term virtual machine monitor (VMM) is a misnomer when there is no virtualization so PMM (Physical Machine Monitor) is used instead. The PMM implements the VIRTIO device back-ends.

	A pre-shared memory region is defined by the physical machine monitor (PMM).

Zephyr-based hypervisorless virtio reference implementation

A set of tools for building a reference deployment of hypervisorless virtio is available here:

https://github.com/danmilea/hypervisorless_virtio_zcu102/

This repository includes the infrastructure required to build and deploy a hypervisorless virtio environment on Xilinx ZCU102 (QEMU) with PetaLinux running on Cortex A53 and Zephyr running on Cortex R5.

The physical machine monitor (PMM) which includes the virtio back-ends runs on PetaLinux and communicates with the Zephyr auxiliary runtime over shared memory.

Implementation notes

OS-specific API is implemented as weak functions in the OpenAMP library which provides support for hypervisorless virtio.

The runtime (e.g. Zephyr) is responsible for providing the following functionality:

/**
 * @brief VIRTIO MMIO shared memory pool initialization routine.
 *
 * @param[in] mem Pointer to memory.
 * @param[in] size Size of memory region in bytes.
 *
 * @return N/A.
 */

void virtio_mmio_shm_pool_init(void *mem, size_t size);

/**
 * @brief VIRTIO MMIO shared memory pool buffer allocation routine.
 *
 * @param[in] size Number of bytes requested.
 *
 * @return pointer to allocated memory space in shared memory region.
 */

void *virtio_mmio_shm_pool_alloc(size_t size);

/**
 * @brief VIRTIO MMIO shared memory pool buffer deallocation routine.
 *
 * @param[in] ptr Pointer to memory space to free.
 *
 * @return N/A.
 */

void virtio_mmio_shm_pool_free(void *ptr);

/**
 * @brief VIRTIO MMIO (hypervisorless mode) inter-processor notification routine.
 *
 * @return N/A.
 */

void virtio_mmio_hvl_ipi(void);

/**
 * @brief VIRTIO MMIO (hypervisorless mode) wait routine.
 *
 * @param[in] usec Number of microseconds to wait.
 *
 * @return N/A.
 */

void virtio_mmio_hvl_wait(uint32_t usec);

In order to operate in hypervisorless mode, the VIRTIO MMIO framework in OpenAMP:

	uses the runtime-specific IPI implementation to signal the PMM in situations when a VM-exit would have been triggerred.

	uses the shared memory allocation routines to allocate bounce buffers in the preshared memory area; the API can also be used directly in the virtio device front-end, and in this case the copy is not performed. The virtqueue descriptors are updated transparently in the vqueue add / get code paths, so the virtio device drivers do not need any changes to operate in hypervisorless mode.

	uses the wait routine to implement conditional wait for VIRTIO MMIO configuration items which share the same configuration register (e.g. QPFN)

The Zephyr-specific implementation can be examined here:

	VIRTIO MMIO: https://github.com/OpenAMP/openamp-zephyr-staging/tree/virtio-exp/drivers/virtio

	hypervisorless virtio sample with network and entropy devices: https://github.com/OpenAMP/openamp-zephyr-staging/tree/virtio-exp/samples/virtio/hvl_net_rng

In the Zephyr implementation, the vrings are allocated in the preshared memory area by moving them to their own binary sections which are then moved to the shared memory area using a custom link script (e.g. https://github.com/OpenAMP/openamp-zephyr-staging/blob/virtio-exp/samples/virtio/hvl_net_rng/linker_r5_hvl.ld).

 OpenAMP virtio - quick reference

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

OpenAMP virtio - quick reference

The OpenAMP library includes experimental support for VIRTIO MMIO drivers in its virtio-exp [https://github.com/OpenAMP/open-amp/tree/virtio-exp] branch. Virtio device drivers for network, console and entropy can be easily created using the API provided by lib OpenAMP, with minimal glue code provided by the target operating system.

Zephyr is our runtime of choice for demonstrating virtio and we have samples demonstrating standard virtio with QEMU ARM as virtual machine monitor on a qemu_cortex_a53 target.

qemu_cortex_r5 is the target for hypervirorless virtio [https://github.com/danmilea/hypervisorless_virtio_zcu102/blob/main/README_hypervisorless_virtio.md], in a configuration based on the Xilinx ZCU 102 platform. In this case, the virtio back-ends are implemented in a fork of the kvmtool VMM [https://github.com/OpenAMP/kvmtool-openamp-staging/tree/hvl-integration], which is available in the OpenAMP System Reference repository on GitHub.

The Zephyr-specific implementation can be examined here:

	Virtio MMIO: https://github.com/OpenAMP/openamp-zephyr-staging/tree/virtio-exp/drivers/virtio

	Zephyr Virtio samples:

	network: https://github.com/OpenAMP/zephyr-openamp-staging/tree/virtio-exp/samples/virtio/net/dhcp

	console: https://github.com/OpenAMP/zephyr-openamp-staging/tree/virtio-exp/samples/virtio/serial/shell_poll

	entropy: https://github.com/OpenAMP/zephyr-openamp-staging/tree/virtio-exp/samples/virtio/entropy

	hypervisorless virtio (network and entropy): https://github.com/OpenAMP/zephyr-openamp-staging/tree/virtio-exp/samples/virtio/hvl_net_rng_reloc

Each of the samples includes a README file with usage instructions.

 How to run a Zephyr application on Xilinx ZCU102 Cortex R5

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

How to run a Zephyr application on Xilinx ZCU102 Cortex R5

Downloads

	ZYNQMP common image (xilinx-zynqmp-common-v2022.1_04191534.tar.gz)

	ZCU 102 BSP (xilinx-zcu102-v2022.1-04191534.bsp)

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html

Petalinux ZCU102 binaries

Root file system

Unpack xilinx-zcu102-v2022.1-04191534.bsp (this is a gzipped tar archive) and xilinx-zynqmp-common-v2022.1_04191534.tar.gz

Flash xilinx-zcu102-2022.1/pre-built/linux/images/petalinux-sdimage.wic
to an SD card.

Kernel image

The kernel image is xilinx-zynqmp-common-v2022.1/Image.

Device tree binary

The device tree file oa.dts is derived from xilinx-zcu102-2022.1/pre-built/linux/images/openamp.dtb with all uart1 entries removed.

dtc -I dts -O dtb oa.dts > oa.dtb

Zephyr application

The zephyr kernel image is based on the hello_world sample with a device tree overlay which enables UART1 for Zephyr output.

Build hello_r5 in your Zephyr environment and copy the resulting zephyr.elf file to your target’s root file system.

west build -p -b qemu_cortex_r5 zephyr/samples/hello_r5

Zephyr source tree tree information

commit 7dfdd5dcd5c9a2315001ca412cc848772a687e1a (origin/main, origin/HEAD)
Author: Martí Bolívar <marti.bolivar@nordicsemi.no>
Date: Fri Apr 8 09:25:49 2022 -0700

ZCU102 boot sequence & Zephyr application deployment

setenv serverip 128.224.125.159
setenv bootargs "earlycon clk_ignore_unused root=/dev/mmcblk0p2 ro rootwait earlyprintk debug uio_pdrv_genirq.of_id=generic-uio";
dhcp 200000 hvlws/zcu102_2022.1/Image
dhcp 100000 hvlws/zcu102_2022.1/oa.dtb
booti 200000 - 100000;

Start zephyr on R5 CPU core 0 in the Petalinux environment

cp /home/petalinux/zephyr/zephyr.elf /lib/firmware/
echo zephyr.elf >/sys/class/remoteproc/remoteproc0/firmware
echo start >/sys/class/remoteproc/remoteproc0/state

The Zephyr application console will be available on ZCU102 UART1.

Note:

Reproducing this in a different Zephyr environment would most likely only require the updated device tree file (oa.dts) used when booting Petalinux and the Zephyr device tree overlay to enable UART1.

Binary size issue for recent Zephyr sources

You may encounter an issue when trying to start the hello app built in recent Zephyr environments (HEAD newer than 7ef05751a3f34030eb06dace23e357d10b33f460).

xilinx-zcu102-20221:/home/petalinux# echo start >/sys/class/remoteproc/remoteproc0/state
[111.353903] remoteproc remoteproc0: powering up ff9a0000.rf5ss:r5f_0
[111.361936] remoteproc remoteproc0: Booting fw image zephyr.elf, size 2073644
[111.375897] remoteproc remoteproc0: no resource table found.
[111.381645] remoteproc remoteproc0: bad phdr da 0xcf80 mem 0x196e8
[111.387836] remoteproc remoteproc0: Failed to load program segments: -22
[111.394844] remoteproc remoteproc0: Boot failed: -22
sh: echo: write error: Invalid argument

In this case apply the zephyr_zcu102_r5.patch patch on your Zephyr source tree and edit hello_r5/prj_qemu_cortex_r5.conf to enable the 3 configuration items which are disabled in the default configuration.

CONFIG_HAVE_CUSTOM_LINKER_SCRIPT=y
CONFIG_CUSTOM_LINKER_SCRIPT="linker_r5_hvl.ld"
CONFIG_SHELL_BACKEND_SERIAL_INTERRUPT_DRIVEN=n

This updated configuration will relocate the text section to memory area located at 0x38000000 and reserved in oa.dts.

 Hello World

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Hello World

Overview

A simple sample that can be used with any supported board and
prints “Hello World” to the console.

Building and Running

This application can be built and executed on QEMU as follows:

To build for another board, change “qemu_x86” above to that board’s name.

Sample Output

Hello World! x86

Exit QEMU by pressing CTRL+A x.

 Software License Agreement (BSD License)

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Software License Agreement (BSD License)

Copyright (c) 2015, Xilinx Inc. and Contributors. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of Xilinx nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Apache License :2.0

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

GPL 2.0

Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

Linux Syscall Note

NOTE! This copyright does not cover user programs that use kernel services by normal system calls - this is merely considered normal use of the kernel, and does not fall under the heading of “derived work”. Also note that the GPL below is copyrighted by the Free Software Foundation, but the instance of code that it refers to (the Linux kernel) is copyrighted by me and others who actually wrote it.

Also note that the only valid version of the GPL as far as the kernel is concerned is this particular version of the license (ie v2, not v2.2 or v3.x or whatever), unless explicitly otherwise stated.

Notes

Use the following tag instead of the full license text in the individual files:

SPDX-License-Identifier: BSD-3-Clause
SPDX-License-Identifier: Apache-2.0
SPDX-License-Identifier: GPL-2.0
SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note

This enables machine processing of license information based on the SPDX
License Identifiers that are here available: http://spdx.org/licenses/

 libmetal Maintainers

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

libmetal Maintainers

The libmetal project is maintained by the OpenAMP open source community.
Everyone is encouraged to submit issues and changes to improve libmetal.

The intention of this file is to provide a set of names that developers can
consult when they have a question about OpenAMP and to provide a set of names
to be CC’d when submitting a patch.

Project Administration

Ed Mooring ed.mooring@gmail.com
Arnaud Pouliquen arnaud.pouliquen@st.com

All patches CC here

openamp-rp@lists.openampproject.org

 libmetal

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

libmetal

Overview

Libmetal provides common user APIs to access devices, handle device interrupts
and request memory across the following operating environments:

	Linux user space (based on UIO and VFIO support in the kernel)

	RTOS (with and without virtual memory)

	Bare-metal environments

For more details on the framework please refer to the
OpenAMP Docs [https://openamp.readthedocs.io/en/latest/].

Project configuration

The configuration phase begins when the user invokes CMake. CMake begins by
processing the CMakeLists.txt file and the cmake directory. Some cmake options
are available to help user to customize the libmetal to their own project.

	WITH_DOC (default ON): Build with documentation. Add -DWITH_DOC=OFF in
cmake command line to disable.

	WITH_EXAMPLES (default ON): Build with application examples. Add
-DWITH_DOC=OFF in cmake command line to disable the option.

	WITH_TESTS (default ON): Build with application tests. Add -DWITH_DOC=OFF
in cmake command line to disable the option.

	WITH_DEFAULT_LOGGER (default ON): Build with default trace logger. Add
-DWITH_DEFAULT_LOGGER=OFF in cmake command line to disable the option.

	WITH_SHARED_LIB (default ON): Generate a shared library. Add
-DWITH_SHARED_LIB=OFF in cmake command line to disable the option.

	WITH_STATIC_LIB (default ON): Generate a static library. Add
-DWITH_STATIC_LIB=OFF in cmake command line to disable the option.

	WITH_ZEPHYR (default OFF): Build for Zephyr environment. Add
-DWITH_ZEPHYR=ON in cmake command line to enable the the option.

Build Steps

Building for Linux Host

 $ git clone https://github.com/OpenAMP/libmetal.git
 $ mkdir -p libmetal/<build directory>
 $ cd libmetal/<build directory>
 $ cmake ..
 $ make VERBOSE=1 DESTDIR=<libmetal install location> install

Cross Compiling for Linux Target

Use meta-openamp [https://github.com/openamp/meta-openamp] to build
libmetal library.

Use package libmetal in your Yocto config file.

Building for Baremetal

To build on baremetal, you will need to provide a toolchain file. Here is an
example toolchain file:

 set (CMAKE_SYSTEM_PROCESSOR "arm" CACHE STRING "")
 set (MACHINE "zynqmp_r5" CACHE STRING "")

 set (CROSS_PREFIX "armr5-none-eabi-" CACHE STRING "")
 set (CMAKE_C_FLAGS "-mfloat-abi=soft -mcpu=cortex-r5 -Wall -Werror -Wextra \
 -flto -Os -I/ws/xsdk/r5_0_bsp/psu_cortexr5_0/include" CACHE STRING "")

 SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -flto")
 SET(CMAKE_AR "gcc-ar" CACHE STRING "")
 SET(CMAKE_C_ARCHIVE_CREATE "<CMAKE_AR> qcs <TARGET> <LINK_FLAGS> <OBJECTS>")
 SET(CMAKE_C_ARCHIVE_FINISH true)

 include (cross-generic-gcc)

	Note: other toolchain files can be found in the cmake/platforms/ directory.

	Compile with your toolchain file.

 $ mkdir -p build-libmetal
 $ cd build-libmetal
 $ cmake <libmetal_source> -DCMAKE_TOOLCHAIN_FILE=<toolchain_file>
 $ make VERBOSE=1 DESTDIR=<libmetal_install> install

	Note: When building baremetal for Xilinx 2018.3 or earlier environments,
add -DXILINX_PRE_V2019 to your CMake invocation. This will include the
xilmem and xilstandalone libraries in your build. These libraries were
removed in 2019.1.

Building for Zephyr

The zephyr-libmetal [https://github.com/zephyrproject-rtos/libmetal]
implements the libmetal for the Zephyr project. It is mainly a fork of this
repository, with some add-ons for integration in the Zephyr project.

Following instruction is only to be able to run test application on a QEMU
running a Zephyr environment.

As Zephyr uses CMake, we build libmetal library and test application as targets
of Zephyr CMake project. Here is how to build libmetal for Zephyr:

 $ export ZEPHYR_TOOLCHAIN_VARIANT=zephyr
 $ export ZEPHYR_SDK_INSTALL_DIR=<where Zephyr SDK is installed>
 $ source <git_clone_zephyr_project_source_root>/zephyr-env.sh

 $ cmake <libmetal_source_root> -DWITH_ZEPHYR=on -DBOARD=qemu_cortex_m3 \
 [-DWITH_TESTS=on]
 $ make VERBOSE=1 all
 # If we have turned on tests with "-DWITH_TESTS=on" when we run cmake,
 # we launch libmetal test on Zephyr QEMU platform as follows:
 $ make VERBOSE=1 run

Interfaces

The following subsections give an overview of interfaces provided by libmetal.

Platform and OS Independent Utilities

These interfaces do not need to be ported across to new operating systems.

I/O

The libmetal I/O region abstraction provides access to memory mapped I/O and
shared memory regions. This includes:

	primitives to read and write memory with ordering constraints, and

	ability to translate between physical and virtual addressing on systems
that support virtual memory.

Log

The libmetal logging interface is used to plug log messages generated by
libmetal into application specific logging mechanisms (e.g. syslog). This
also provides basic message prioritization and filtering mechanisms.

List

This is a simple doubly linked list implementation used internally within
libmetal, and also available for application use.

Other Utilities

The following utilities are provided in lib/utilities.h:

	Min/max, round up/down, etc.

	Bitmap operations

	Helper to compute container structure pointers

	… and more …

Version

The libmetal version interface allows user to get the version of the library.
The version increment follows the set of rule proposed in
Semantic Versioning specification [https://semver.org/].

Top Level Interfaces

The users will need to call two top level interfaces to use libmetal APIs:

	metal_init - initialize the libmetal resource

	metal_finish - release libmetal resource

Each system needs to have their own implementation inside libmetal for these
two APIs to call:

	metal_sys_init

	metal_sys_finish

For the current release, libmetal provides Linux userspace and bare-metal
implementation for metal_sys_init and metal_sys_finish.

For Linux userspace, metal_sys_init sets up a table for available shared pages,
checks whether UIO/VFIO drivers are avail, and starts interrupt handling thread.

Please note that on Linux, to access device’s memory that is not page aligned,
an offset has to be added to the pointer returned by mmap(). This offset,
although it can be read from the device tree property exposed by the uio driver,
is not handled yet by the library.

For bare-metal, metal_sys_init and metal_sys_finish just returns.

Atomics

The libmetal atomic operations API is consistent with the C11/C++11 stdatomics
interface. The stdatomics interface is commonly provided by recent toolchains
including GCC and LLVM/Clang. When porting to a different toolchain, it may be
necessary to provide an stdatomic compatible implementation if the toolchain
does not already provide one.

Alloc

libmetal provides memory allocation and release APIs.

Locking

libmetal provides the following locking APIs.

Mutex

libmetal has a generic mutex implementation which is a busy wait. It is
recommended to have OS specific implementation for mutex.

The Linux userspace mutex implementation uses futex to wait for the lock
and wakeup a waiter.

Condition Variable

libmetal condition variable APIs provide “wait” for user applications to wait
on some condition to be met, and “signal” to indicate a particular even occurs.

Spinlock

libmetal spinlock APIs provides busy waiting mechanism to acquire a lock.

Shmem

libmetal has a generic static shared memory implementation. If your OS has a
global shared memory allocation, you will need to port it for the OS.

The Linux userspace shmem implementation uses libhugetlbfs to support huge page
sizes.

Bus and Device Abstraction

libmetal has a static generic implementation. If your OS has a driver model
implementation, you will need to port it for the OS.

The Linux userspace abstraction binds the devices to UIO or VFIO driver. The
user applications specify which device to use, e.g. bus “platform” bus, device
“f8000000.slcr”, and then the abstraction will check if platform UIO driver or
platform VFIO driver is there. If platform VFIO driver exists, it will bind the
device to the platform VFIO driver, otherwise, if UIO driver exists, it will
bind the device to the platform UIO driver.

The VFIO support is not yet implemented.

Interrupt

libmetal provides APIs to register an interrupt, disable interrupts and restore
interrupts.

The Linux userspace implementation will use a thread to call select() function
to listen to the file descriptors of the devices to see if there is an interrupt
triggered. If there is an interrupt triggered, it will call the interrupt
handler registered by the user application.

Cache

libmetal provides APIs to flush and invalidate caches.

The cache APIs for Linux userspace are empty functions for now as cache
operations system calls are not available for all architectures.

DMA

libmetal DMA APIs provide DMA map and unmap implementation.

After calling DMA map, the DMA device will own the memory.
After calling DMA unmap, the cpu will own the memory.

For Linux userspace, it only supports to use UIO device memory as DMA
memory for this release.

Time

libmetal time APIs provide getting timestamp implementation.

Sleep

libmetal sleep APIs provide getting delay execution implementation.

Compiler

This API is for compiler dependent functions. For this release, there is only
a GCC implementation, and compiler specific code is limited to atomic
operations.

How to contribute

As an open-source project, we welcome and encourage the community to submit
patches directly to the project. As a contributor you should be familiar with
common developer tools such as Git and CMake, and platforms such as GitHub.

Then following points should be rescpected to facilitate the review process.

Licencing

Code is contributed to OpenAMP under a number of licenses, but all code must be
compatible with version the
BSD License [https://github.com/OpenAMP/libmetal/blob/master/LICENSE.md], which
is the license covering the OpenAMP distribution as a whole. In practice, use
the following tag instead of the full license text in the individual files:

```
SPDX-License-Identifier:    BSD-3-Clause
```


Signed-off-by

Commit messages must contain Signed-off-by: line and your email must match the
change authorship information. Make sure your .gitconfig is set up correctly:

```
git config --global user.name "first-name Last-Namer"
git config --global user.email "yourmail@company.com"
```


gitlint

Before you submit a pull request to the project, verify your commit messages
meet the requirements. The check can be performed locally using the the gitlint
command.

Run gitlint locally in your tree and branch where your patches have been
committed:

  ```gitlint```





Note, gitlint only checks HEAD (the most recent commit), so you should run it
after each commit, or use the –commits option to specify a commit range
covering all the development patches to be submitted.



Code style

In general, follow the Linux kernel coding style, with the following exceptions:


	Use /**  */ for doxygen comments that need to appear in the documentation.




The Linux kernel GPL-licensed tool checkpatch is used to check coding style
conformity. Checkpatch is available in the scripts directory.

To check your <n> commits in your git branch:

./scripts/checkpatch.pl --strict  -g HEAD-<n>








Send a pull request

We use standard GitHub mechanism for pull request. Please refer to GitHub
documentation for help.




Communication and Collaboration

Subscribe [https://lists.openampproject.org/mailman3/lists/openamp-rp.lists.openampproject.org/]
to the OpenAMP mailing list (openamp-rp@lists.openampproject.org).





            

          

      


      

    

  

  
    
    

    Libmetal build check docker action
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
Libmetal build check docker action

This action test builds for a specified target.


Inputs


target

Required the build target. Default "linux".
The supported targets are:
linux
generic arm
freertos
zephyr




Example usage

uses: ./.github/actions/build_ci
with:
target: freertos





            

          

      


      

    

  

  
    
    

    Software License Agreement (BSD License)
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
Software License Agreement (BSD License)

Copyright (c) 2020, Xilinx Inc. and Contributors. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:


	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.


	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.


	Neither the name of Xilinx nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.




THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.



Notes

Use the following tag instead of the full license text in the individual files:

SPDX-License-Identifier:    BSD-3-Clause





This enables machine processing of license information based on the SPDX
License Identifiers that are here available: http://spdx.org/licenses/




            

          

      


      

    

  

  
    
    

    Lopper processing flow:
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
Lopper processing flow:

Lopper is data driven and only performs operations or invokes assist routines as
specified by its inputs (command line or operation files). This means that
Lopper does not have codified understanding of a system device tree, and doesn’t
infer or trigger operations based on the content of the tree.

Complex logic can be performed in assist routines, and/or multiple core
operations can be stacked to modify and transform the tree. Depending on how the
inputs to the tool are produced, lop files can be large and complex, or small
and simple with more complex logic resting in the assist modules. The choice is
up to the user.

Lopper abstracts the libraries and internal formats used to manipulate the
device tree. As long as Lopper routines and abstractions are used, the internal
format of the files, and libraries to manipulate the tree can change in the
future without the inputs and outputs differing.

Currently, Lopper operates on dtb files. It does not parse or otherwise
manipulate source dts files (except for pre-processing). Lopper uses libfdt for
operations on these files, and uses the standard dtc tools to prepare the files
for manipulation.

The flow of lopper processing is broken into the following broad categories:


	setup

The inputs are validated and the base LopperSDT object created to manage the
provided system device tree. This object abstracts the libraries and tree
structure whenever possible.



	input file normalization with standard tools

Lopper processes input files by invoking a standard pipeline of processing
on dts files using standard tools. pcpp (or cpp) is used for pre-processing and
expansion, and dtc is used to compile dts inputs into dtbs. Lopper is
somewhat tolerant of incomplete dts inputs, and will use forced dtc
compilation to ensure that dtbs are generated (with the assumption that the
lopper operations will adjust and fix any issues with the input files).

system device tree, device tree and lopper operations files are all
processed with the same tools during input file normalization.

Note that lopper operations file can be passed directly as dtb files, and
applied to the tree, but the system device tree and other device tree
fragments must be source (so they can be pre-processed and concatenated
as needed).



	operation runqueue execution

Once the system device tree is established, and lopper operation files
identified, the lops are processed in priority order (priority specified at
the file level), and the rules processed in order as they appear in the lop
file.

lopper operations can immediately process the output of the previous
operation and hence can be stacked to perform complex operations.



	finalization / output

Once all operations have been executed against a tree, some common
finalization / resize and other sanity checks are executed against the tree.
If inconsistencies or other errors are detected, the user is notified and
lopper exits.

Lopper can also stay resident after execution and offer a ReST API to
query the device tree. The details of the API are still in design, but will
be described in this document when complete.



	cleanup

As part of processing the input files, lopper generates temp or intermediate
files. An exit and trap handler are part of lopper and will clean up in the
case or normal or abnormal exit.







Lopper Classes / Routines:

Lopper contains the following classes for use when manipulating a system device
tree:


	Lopper


	LopperSDT


	LopperTree


	LopperNode


	LopperProp


	LopperTreePrinter






	LopperYAML


	LopperFile (internal use only)


	LopperAssist (internal use only)




The Lopper class is a container class (with static methods) of utility routines
and wrappers around libfdt functions for flattened device trees. More robust
encode, decode of properties, node copy, etc. These utilities routines will work
on any FDT object as returned by libfdt, and hence can work on both the fdt
embedded in LopperSDT/LopperTree objects, or on loaded lopper operation files.

The LopperSDT class is an abstraction around the loaded system device tree, and
is the primary target of lopper operations. This class is responsible for the
setup of the FDT (using dtc, pcpp (or cpp), etc, to compile it to a dtb), loading
operations and assists, running operations, writing the default output and
cleaning up any temporary files.

LopperYAML is a reader/writer of YAML inputs, and it converts what is read to
LopperTree format (and from tree -> YAML on write). The internals of LopperYAML
are not significant, except for the routines to_yaml() and to_tree(), which are
used to convert formats.

LopperSDT uses the LopperTree + LopperNode + LopperProp classes to manipulate
the underlying FDT without the details of those manipulations being throughout
the classes. These classes provide python ways to iterate, access and write tree
based logic around the underlying device tree.

A snapshot of pydoc information for lopper is maintained in README.pydoc. For
the latest detailed information on lopper, execute the following:

% pydoc3 lopper/__init__.py
% pydoc3 lopper/tree.py
% pydoc3 lopper/fdt.py
% pydoc3 lopper/dt.py







Lopper Inputs / Outputs:

Although most inputs and outputs from Lopper are dts files (or dtb in rare cases),
YAML is also supported. While not everything can (or should) be expressed in
YAML, both lops and device tree elements can be expressed in this format.

Note: The core of Lopper, assists, lops, etc, are not aware of the input /
output formats, but operate on the LopperTree/Lopper data structures. It is this
separation that allows Lopper to abstract both the tree and convert between the
various formats.

To aid decoding and interpretation of properties carried in a LopperTree, if a
node has been created from yaml, the LopperNode field ‘_source’ is set to “yaml”
(otherwise it is “dts”).



Lopper Tree and complex (non-dts) types:

Depending on the input format, complex data types or associated data are
carried in the Lopper tree.

As an example, yaml constructs can be mapped directly to device tree formats
(strings, ints, etc), but other complex structures (maps, lists, mixed types)
need to be interpreted / expanded by an assist or an xlate lop.

To ensure that the LopperTree is always compatible with dts/fdt, these complex
types are json encoded and carried as a string in a LopperProp. When json
encoding is used, the “pclass” of the LopperProp is set to “json”, so that it
can be loaded and expanded for processing.



Lopper operations

Lopper operations are passed to the tool in a dts format file. Any number of
operations files can be passed, and they will be executed in priority order.

A lopper operations (lops) file has the following structure:



/dts-v1/;

/ {
        compatible = "system-device-tree-v1";
        // optional priority, normally not specified
        priority = <1>;
        lops {
                lop_<number> {
                        compatible = "system-device-tree-v1,lop,<lop type>";
                        <lop specific properties>;
                };
                lop_<number> {
                        compatible = "system-device-tree-v1,lop,<lop type>";
                        <lop specific properties>;
                };
        };
};







The important elements of the file are that it is structured like any standard
dts file, and that the root of the device tree must have the compatible string,
so that it will be recognized as a lop file.

compatible = “system-device-tree-v1,lop”;

The lops can then have a specified priority, with <1> being the highest
priority and <10> being the lowest. This is used to broadly order operations
such that preparation lops (such as loading a module) can be run before
dependent operations.

Finally, a set of lops are passed. The lops are identified by lop_ and
have a compatible string that identifies the type of operation, followed by any
lop specific properties. The  in a lop node is a convention for easier
reading, but is not used by lopper to order operations. The order lops appear in
the file is the order they are applied.
  
    
    

    Overview:
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
Overview:

Fundamentally, lopper takes an input device tree (normally a system device tree),
applies operations to that tree, and outputs one or more modified/processed trees.

See the README-architecture.txt for details on how lopper works. This README file
has practical information, known limitations and TODO items.



config/setup:

Lopper is in a single repository, and is available via git or pypi:


git:

Ensure that the prerequisite tools are installed on your host. Lopper is written
in python3, and requires that standard support libraries are installed. Current
testing has been against python3.5.x, but no issues are expected on newer 3.x
releases.

In addition to the standard libraries, Lopper uses: pcpp (or cpp), humanfriendly,
dtc and libfdt for processing and manipulating device trees. These tools must be
installed and on the PATH.

Note: (python cpp) pcpp is optional (available on PyPi), and if not available cpp
will be used for pre-processing input files. If comments are to be maintained
through the processing flow, pcpp must be used since it has functionality to
not strip them during processing.

For yaml file processing, lopper has an optional dependency on python’s yaml
and ruamel as well as anytree for importing the contents of yaml files.



pypi:

The pip installation will pull in the required dependencies, and also contains
the following optional features:

  - 'server' : enable if the ReST API server is required
  - 'yaml'   : enable for yaml support
  - 'dt'     : enable if non-libfdt support is required
  - 'pcpp'   : enable for enhanced preprocessing functionality





i.e.:

Note: lopper (via clone or pip) contains a vendored python libfdt (from dtc), since
it is not available via a pip dependency. If the vendored versions do not match
the python in use, you must manually ensure that libfdt is installed and
available.

If it is not in a standard location, make sure it is on PYTHONPATH:




submitting patches / reporting issues

Pull requests or patches are acceptable for sending changes/fixes/features to Lopper,
chose whichever matches your preferred workflow.

For pull requests and issues:


	Use the Lopoper github: https://github.com/devicetree-org/lopper




For Patches:


	Use the groups.io mailing list: https://groups.io/g/lopper-devel


	kernel (lkml) style patch sending is preferred


	Send patches via git send-mail, using something like:





For discussion:


	Use the mailing list or the github wiki/dicussions/issue tracker






Lopper overview:

lopper.py –help

Usage: lopper.py [OPTION] <system device tree> [<output file>]...
  -v, --verbose       enable verbose/debug processing (specify more than once for more verbosity)
  -t, --target        indicate the starting domain for processing (i.e. chosen node or domain label)
    , --dryrun        run all processing, but don't write any output files
  -d, --dump          dump a dtb as dts source
  -i, --input         process supplied input device tree description
  -a, --assist        load specified python assist (for node or output processing)
  -A, --assist-paths  colon separated lists of paths to search for assist loading
    , --enhanced      when writing output files, do enhanced processing (this includes phandle replacement, comments, etc
    . --auto          automatically run any assists passed via -a
    , --permissive    do not enforce fully validated properties (phandles, etc)
  -o, --output        output file
    , --overlay       Allow input files (dts or yaml) to overlay system device tree nodes
  -x. --xlate         run automatic translations on nodes for indicated input types (yaml,dts)
    , --no-libfdt     don't use dtc/libfdt for parsing/compiling device trees
  -f, --force         force overwrite output file(s)
    , --werror        treat warnings as errors
  -S, --save-temps    don't remove temporary files
    , --cfgfile       specify a lopper configuration file to use (configparser format)
    , --cfgval        specify a configuration value to use (in configparser section format). Can be specified multiple times
  -h, --help          display this help and exit
  -O, --outdir        directory to use for output files
    , --server        after processing, start a server for ReST API calls
    , --version       output the version and exit





A few command line notes:

-i : these can be either lop files, or device tree files (system device
tree or other). The compatible string in lop files is used to
distinguish operation files from device tree files. If passed, multiple
device tree files are concatenated before processing.
  
    
    

    System devicetree specification
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
System devicetree specification

This directory contains the System Devicetree Specification.

The specification source files are in .rst format, and can be used to
generate the specification in HTML or PDF format using Sphinx (and
LaTeX, for PDF output).


Requirements

Building the specification requires:


	Sphinx: https://www.sphinx-doc.org/


	(optional) LaTeX (and pdflatex, and various LaTeX packages) for PDF output




To install requirements on Ubuntu (tested on 22.04) or Debian (tested
on bullseye):

# apt-get install python3-sphinx





To install optional LaTeX requirements for building PDF:

# apt-get install texlive texlive-latex-extra texlive-humanities latexmk







Building the specification

Run one or more of these:

$ make html       # HTML output, one page per chapter
$ make singlehtml # HTML output, one long page
$ make latexpdf   # PDF output, requires LaTeX and associated packages





In each case, the build command will print the directory containing
the specification documents when it finishes.





            

          

      


      

    

  

  
    
    

    8. Appendix: Example System Devicetree
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
8. Appendix: Example System Devicetree


Note

The contents of this chapter are still under discussion.



This appendix contains a draft example system devicetree illustrating several
concepts discussed in earlier chapters.

/dts-v1/;

/ {
	compatible = "xlnx,versal-vc-p-a2197-00-revA",
		     "xlnx,versal-vc-p-a2197-00",
		     "xlnx,versal-vc-p-a2197",
		     "xlnx,versal";
	#address-cells = <0x2>;
	#size-cells = <0x2>;
	model = "Xilinx Versal A2197 Processor board revA";

	amba_xppu: xppu-bus {
		compatible = "indirect-bus";
		#address-cells = <0x2>;
		#size-cells = <0x2>;

		lpd_xppu: xppu@ff990000 {
			compatible = "xlnx,xppu";
			reg = <0x0 0xff990000 0x0 0x1000>;
			#firewall-cells = <0x0>;
		};

		pmc_xppu: xppu@f1310000 {
			compatible = "xlnx,xppu";
			reg = <0x0 0xf1310000 0x0 0x1000>;
			#firewall-cells = <0x0>;
		};
	};

	cpus_a72: cpus {
		#address-cells = <0x1>;
		#size-cells = <0x0>;
		#cpus-mask-cells = <0x1>;
		compatible = "cpus,cluster";

		cpu@0 {
			compatible = "arm,cortex-a72", "arm,armv8";
			device_type = "cpu";
			enable-method = "psci";
			operating-points-v2 = <0x1>;
			reg = <0x0>;
			cpu-idle-states = <0x2>;
			clocks = <0x3 0x4d>;
		};

		cpu@1 {
			compatible = "arm,cortex-a72", "arm,armv8";
			device_type = "cpu";
			enable-method = "psci";
			operating-points-v2 = <0x1>;
			reg = <0x1>;
			cpu-idle-states = <0x2>;
		};
	};

	cpus_r5: cpus-cluster-r5 {
		#address-cells = <0x1>;
		#size-cells = <0x0>;
		#cpus-mask-cells = <0x1>;
		compatible = "cpus,cluster";

		bus-master-id = <0x0 0x1>;

		#ranges-size-cells = <0x1>;
		#ranges-address-cells = <0x1>;

		address-map = <0xf1000000 &amba 0xf1000000 0xeb00000>,
		              <0xf9000000 &amba_rpu 0xf9000000 0x10000>,
		              <0x0 &memory 0x0 0x80000000>,
		              <0x0 &tcm 0xFFE90000 0x10000>;

		cpu@0 {
			compatible = "arm,cortex-r5";
			device_type = "cpu";
			reg = <0x0>;
		};

		cpu@1 {
			compatible = "arm,cortex-r5";
			device_type = "cpu";
			reg = <0x1>;
		};
	};

	microblaze0: cpus-cluster-microblaze0 {
		#address-cells = <0x1>;
		#size-cells = <0x0>;
		#cpus-mask-cells = <0x1>;
		compatible = "cpus,cluster";

		bus-master-id = <0x11>;

		#ranges-size-cells = <0x1>;
		#ranges-address-cells = <0x1>;

		address-map = <0xf1000000 &amba 0xf1000000 0xeb00000>,
		              <0x0 &memory 0x0 0x80000000>;

		cpu@0 {
			compatible = "xlnx,microblaze";
			device_type = "cpu";
			reg = <0x0>;
		};
	};

	pmc: cpus-cluster-pmc {
		#address-cells = <0x1>;
		#size-cells = <0x0>;
		#cpus-mask-cells = <0x1>;
		compatible = "cpus,cluster";

		bus-master-id = <12>;

		#ranges-size-cells = <0x1>;
		#ranges-address-cells = <0x1>;

		address-map = <0xf1000000 &amba 0xf1000000 0xeb00000>,
		              <0x0 &memory 0x0 0x80000000>;

		cpu@0 {
			compatible = "xlnx,microblaze";
			device_type = "cpu";
			reg = <0x0>;
		};
	};

	fpga {
		compatible = "fpga-region";
		fpga-mgr = <0x4>;
		#address-cells = <0x2>;
		#size-cells = <0x2>;
	};

	versal_fpga {
		compatible = "xlnx,versal-fpga";
		phandle = <0x4>;
	};

	amba_apu: apu-bus {
		compatible = "simple-bus";
		#address-cells = <0x2>;
		#size-cells = <0x2>;
		ranges;

		gic_a72: interrupt-controller@f9000000 {
			compatible = "arm,gic-v3";
			#interrupt-cells = <0x3>;
			#address-cells = <0x2>;
			#size-cells = <0x2>;
			ranges;
			reg = <0x0 0xf9000000 0x0 0x80000
			       0x0 0xf9080000 0x0 0x80000>;
			interrupt-controller;
			interrupt-parent = <&gic_a72>;
			interrupts = <0x1 0x9 0x4>;
			num_cpus = <0x2>;
			num_interrupts = <0x60>;
			phandle = <0x5>;

			gic-its@f9020000 {
				compatible = "arm,gic-v3-its";
				msi-controller;
				msi-cells = <0x1>;
				reg = <0x0 0xf9020000 0x0 0x20000>;
				phandle = <0x1b>;
			};
		};

		iommu: smmu@fd800000 {
		    compatible = "arm,mmu-500";
		    status = "okay";
		    reg = <0x0 0xfd800000 0x0 0x40000>;
		    stream-match-mask = <0x7c00>;
		    #iommu-cells = <0x1>;
		    #global-interrupts = <0x1>;
		    interrupt-parent = <&gic_a72>;
		    interrupts = <0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4
				  0x0 0x6b 0x4>;
		};

		timer {
		     compatible = "arm,armv8-timer";
		     interrupt-parent = <&gic_a72>;
		     interrupts = <0x1 0xd 0x4
				   0x1 0xe 0x4
				   0x1 0xb 0x4
				   0x1 0xa 0x4>;
		};
	};

	amba_rpu: rpu-bus {
		compatible = "indirect-bus";
		#address-cells = <0x2>;
		#size-cells = <0x2>;

		gic_r5: interrupt-controller@f9000000 {
			compatible = "arm,pl390";
			#interrupt-cells = <3>;
			interrupt-controller;
			reg = <0x0 0xf9000000 0x0 0x1000
			       0x0 0xf9000000 0x0 0x100>;
		};
	};

	amba: axi-bus {
		compatible = "simple-bus";
		#address-cells = <0x2>;
		#size-cells = <0x2>;
		ranges;

		#interrupt-cells = <3>;
		/* copy all attributes from child to parent */
		interrupt-map-pass-thru = <0xffffffff 0xffffffff 0xffffffff>;
		/* mask all child bits to always match the first 0x0 entries */
		interrupt-map-mask = <0x0 0x0 0x0>;
		/* 1:1 mapping of all interrupts to gic_a72 and gic_r5 */
		/* child address cells, child interrupt cells, parent,
		 * parent interrupt cells */
		interrupt-map = <0x0 0x0 0x0 &gic_a72 0x0 0x0 0x0>,
			<0x0 0x0 0x0 &gic_r5 0x0 0x0 0x0>;

		can0: can@ff060000 {
			compatible = "xlnx,canfd-2.0";
			status = "okay";
			secure-status = "okay"; /* unnecessary as it defaults to status */

			reg = <0x0 0xff060000 0x0 0x6000>;
			interrupts = <0x0 0x14 0x1>;
			clock-names = "can_clk", "s_axi_aclk";
			rx-fifo-depth = <0x40>;
			tx-mailbox-count = <0x20>;
			clocks = <0x6 0x3 0x52>;
			power-domains = <0x7 0x1822401f>;

			firewall-0 = <&lpd_xppu>;
		};

		can@ff070000 {
			compatible = "xlnx,canfd-2.0";
			status = "okay";
			reg = <0x0 0xff070000 0x0 0x6000>;
			interrupts = <0x0 0x15 0x1>;
			clock-names = "can_clk", "s_axi_aclk";
			rx-fifo-depth = <0x40>;
			tx-mailbox-count = <0x20>;
			clocks = <0x8 0x3 0x52>;
			power-domains = <0x7 0x18224020>;
		};

		cci@fd000000 {
			compatible = "arm,cci-500";
			status = "okay";
			reg = <0x0 0xfd000000 0x0 0x10000>;
			ranges = <0x0 0x0 0xfd000000 0xa0000>;
			#address-cells = <0x1>;
			#size-cells = <0x1>;

			pmu@10000 {
				compatible = "arm,cci-500-pmu,r0";
				reg = <0x10000 0x90000>;
				interrupts = <0x0 0x6a 0x4
					      0x0 0x6a 0x4
					      0x0 0x6a 0x4
					      0x0 0x6a 0x4
					      0x0 0x6a 0x4
					      0x0 0x6a 0x4
					      0x0 0x6a 0x4
					      0x0 0x6a 0x4
					      0x0 0x6a 0x4>;
			};
		};

		dma@ffa80000 {
			compatible = "xlnx,zynqmp-dma-1.0";
			status = "okay";
			reg = <0x0 0xffa80000 0x0 0x1000>;
			interrupts = <0x0 0x3c 0x4>;
			clock-names = "clk_main", "clk_apb";
			#stream-id-cells = <0x1>;
			iommus = <&iommu 0x210>;
			xlnx,bus-width = <0x40>;
			clocks = <0x3 0x51 0x3 0x52>;
			power-domains = <0x7 0x18224035>;
			phandle = <0xf>;
		};

		dma@ffa90000 {
			compatible = "xlnx,zynqmp-dma-1.0";
			status = "okay";
			reg = <0x0 0xffa90000 0x0 0x1000>;
			interrupts = <0x0 0x3d 0x4>;
			clock-names = "clk_main", "clk_apb";
			#stream-id-cells = <0x1>;
			iommus = <&iommu 0x212>;
			xlnx,bus-width = <0x40>;
			clocks = <0x3 0x51 0x3 0x52>;
			power-domains = <0x7 0x18224036>;
			phandle = <0x10>;
		};

		dma@ffaa0000 {
			compatible = "xlnx,zynqmp-dma-1.0";
			status = "okay";
			reg = <0x0 0xffaa0000 0x0 0x1000>;
			interrupts = <0x0 0x3e 0x4>;
			clock-names = "clk_main", "clk_apb";
			#stream-id-cells = <0x1>;
			iommus = <&iommu 0x214>;
			xlnx,bus-width = <0x40>;
			clocks = <0x3 0x51 0x3 0x52>;
			power-domains = <0x7 0x18224037>;
			phandle = <0x11>;
		};

		dma@ffab0000 {
			compatible = "xlnx,zynqmp-dma-1.0";
			status = "okay";
			reg = <0x0 0xffab0000 0x0 0x1000>;
			interrupts = <0x0 0x3f 0x4>;
			clock-names = "clk_main", "clk_apb";
			#stream-id-cells = <0x1>;
			iommus = <&iommu 0x216>;
			xlnx,bus-width = <0x40>;
			clocks = <0x3 0x51 0x3 0x52>;
			power-domains = <0x7 0x18224038>;
			phandle = <0x12>;
		};

		dma@ffac0000 {
			compatible = "xlnx,zynqmp-dma-1.0";
			status = "okay";
			reg = <0x0 0xffac0000 0x0 0x1000>;
			interrupts = <0x0 0x40 0x4>;
			clock-names = "clk_main", "clk_apb";
			#stream-id-cells = <0x1>;
			iommus = <&iommu 0x218>;
			xlnx,bus-width = <0x40>;
			clocks = <0x3 0x51 0x3 0x52>;
			power-domains = <0x7 0x18224039>;
			phandle = <0x13>;
		};

		dma@ffad0000 {
			compatible = "xlnx,zynqmp-dma-1.0";
			status = "okay";
			reg = <0x0 0xffad0000 0x0 0x1000>;
			interrupts = <0x0 0x41 0x4>;
			clock-names = "clk_main", "clk_apb";
			#stream-id-cells = <0x1>;
			iommus = <&iommu 0x21a>;
			xlnx,bus-width = <0x40>;
			clocks = <0x3 0x51 0x3 0x52>;
			power-domains = <0x7 0x1822403a>;
			phandle = <0x14>;
		};

		dma@ffae0000 {
			compatible = "xlnx,zynqmp-dma-1.0";
			status = "okay";
			reg = <0x0 0xffae0000 0x0 0x1000>;
			interrupts = <0x0 0x42 0x4>;
			clock-names = "clk_main", "clk_apb";
			#stream-id-cells = <0x1>;
			iommus = <&iommu 0x21c>;
			xlnx,bus-width = <0x40>;
			clocks = <0x3 0x51 0x3 0x52>;
			power-domains = <0x7 0x1822403b>;
			phandle = <0x15>;
		};

		dma@ffaf0000 {
			compatible = "xlnx,zynqmp-dma-1.0";
			status = "okay";
			reg = <0x0 0xffaf0000 0x0 0x1000>;
			interrupts = <0x0 0x43 0x4>;
			clock-names = "clk_main", "clk_apb";
			#stream-id-cells = <0x1>;
			iommus = <&iommu 0x21e>;
			xlnx,bus-width = <0x40>;
			clocks = <0x3 0x51 0x3 0x52>;
			power-domains = <0x7 0x1822403c>;
			phandle = <0x16>;
		};

		ethernet0: ethernet@ff0c0000 {
			compatible = "cdns,versal-gem";
			status = "okay";
			reg = <0x0 0xff0c0000 0x0 0x1000>;
			interrupts = <0x0 0x38 0x4 0x0 0x38 0x4>;
			clock-names = "pclk", "hclk", "tx_clk", "rx_clk", "tsu_clk";
			#stream-id-cells = <0x1>;
			#address-cells = <0x1>;
			#size-cells = <0x0>;
			iommus = <&iommu 0x234>;
			phy-handle = <0x9>;
			phy-mode = "rgmii-id";
			clocks = <0x3 0x52 0x3 0x58 0x3 0x31 0x3 0x30 0x3 0x2b>;
			power-domains = <0x7 0x18224019>;
			phandle = <0xb>;

			bus-master-id = <0x234>;
			firewall-0 = <&lpd_xppu>;

			/*
			 * Nodeid of the ethernet device
			 *
			 * Clock, reset and power-domain nodeids are passed as
			 * parameters to the clocks, power-domains, and resets
			 * properties so that we don't have to have a node for each
			 * individual clock/reset/power-domain.
			 *
			 * Other nodes have their nodeid explicitly defined using
			 * the xilinx,nodeid property.
			 */
			xilinx,nodeid = <0xffff>;

			phy@1 {
				reg = <0x1>;
				ti,rx-internal-delay = <0xb>;
				ti,tx-internal-delay = <0xa>;
				ti,fifo-depth = <0x1>;
				ti,dp83867-rxctrl-strap-quirk;
				phandle = <0x9>;
			};

			phy@2 {
				reg = <0x2>;
				ti,rx-internal-delay = <0xb>;
				ti,tx-internal-delay = <0xa>;
				ti,fifo-depth = <0x1>;
				ti,dp83867-rxctrl-strap-quirk;
				phandle = <0xa>;
			};
		};

		ethernet@ff0d0000 {
			compatible = "cdns,versal-gem";
			status = "okay";
			reg = <0x0 0xff0d0000 0x0 0x1000>;
			interrupts = <0x0 0x3a 0x4 0x0 0x3a 0x4>;
			clock-names = "pclk", "hclk", "tx_clk", "rx_clk", "tsu_clk";
			#stream-id-cells = <0x1>;
			#address-cells = <0x1>;
			#size-cells = <0x0>;
			iommus = <&iommu 0x235>;
			phy-handle = <0xa>;
			phy-mode = "rgmii-id";
			clocks = <0x3 0x52 0x3 0x59 0x3 0x33 0x3 0x32 0x3 0x2b>;
			power-domains = <0x7 0x1822401a>;
			phandle = <0xc>;
		};

		gpio@ff0b0000 {
			compatible = "xlnx,versal-gpio-1.0";
			status = "okay";
			reg = <0x0 0xff0b0000 0x0 0x1000>;
			interrupts = <0x0 0xd 0x4>;
			#gpio-cells = <0x2>;
			gpio-controller;
			#interrupt-cells = <0x2>;
			interrupt-controller;
			clocks = <0x3 0x52>;
			power-domains = <0x7 0x18224023>;
		};

		gpio@f1020000 {
			compatible = "xlnx,versal-gpio-1.0";
			status = "okay";
			reg = <0x0 0xf1020000 0x0 0x1000>;
			interrupts = <0x0 0x7a 0x4>;
			#gpio-cells = <0x2>;
			gpio-controller;
			#interrupt-cells = <0x2>;
			interrupt-controller;
			clocks = <0x3 0x3d>;
			power-domains = <0x7 0x18224023>;
			phandle = <0x19>;
		};

		i2c@ff020000 {
			compatible = "cdns,i2c-r1p14", "cdns,i2c-r1p10";
			status = "disabled";
			reg = <0x0 0xff020000 0x0 0x1000>;
			interrupts = <0x0 0xe 0x4>;
			clock-frequency = <0x61a80>;
			#address-cells = <0x1>;
			#size-cells = <0x0>;
			clocks = <0x3 0x62>;
			power-domains = <0x7 0x1822401d>;
		};

		i2c@ff030000 {
			compatible = "cdns,i2c-r1p14", "cdns,i2c-r1p10";
			status = "okay";
			reg = <0x0 0xff030000 0x0 0x1000>;
			interrupts = <0x0 0xf 0x4>;
			clock-frequency = <0x61a80>;
			#address-cells = <0x1>;
			#size-cells = <0x0>;
			clocks = <0x3 0x63>;
			power-domains = <0x7 0x1822401e>;

			eeprom@51 {
				compatible = "st,24c128", "atmel,24c128";
				reg = <0x51>;
			};
		};

		rtc@f12a0000 {
			compatible = "xlnx,zynqmp-rtc";
			status = "okay";
			reg = <0x0 0xf12a0000 0x0 0x100>;
			interrupt-names = "alarm", "sec";
			interrupts = <0x0 0x8e 0x4 0x0 0x8f 0x4>;
			calibration = <0x8000>;
			power-domains = <0x7 0x18224034>;
		};

		sdhci@f1040000 {
			compatible = "xlnx,versal-8.9a", "arasan,sdhci-8.9a";
			status = "disabled";
			reg = <0x0 0xf1040000 0x0 0x10000>;
			interrupts = <0x0 0x7e 0x4 0x0 0x7e 0x4>;
			clock-names = "clk_xin", "clk_ahb";
			xlnx,device_id = <0x0>;
			#stream-id-cells = <0x1>;
			iommus = <&iommu 0x242>;
			clocks = <0x3 0x3b 0x3 0x52>;
			power-domains = <0x7 0x1822402e>;
			phandle = <0x17>;
		};

		mmc0: sdhci@f1050000 {
			compatible = "xlnx,versal-8.9a", "arasan,sdhci-8.9a";
			status = "okay";
			reg = <0x0 0xf1050000 0x0 0x10000>;
			interrupts = <0x0 0x80 0x4 0x0 0x80 0x4>;
			clock-names = "clk_xin", "clk_ahb";
			xlnx,device_id = <0x1>;
			#stream-id-cells = <0x1>;
			iommus = <&iommu 0x243>;
			xlnx,mio_bank = <0x1>;
			no-1-8-v;
			clocks = <0x3 0x3c 0x3 0x52>;
			power-domains = <0x7 0x1822402f>;
			clock-frequency = <0xbebba31>;
			phandle = <0x18>;

			bus-master-id = <0x243>;
			firewall-0 = <&pmc_xppu>;
		};

		serial0: serial@ff000000 {
			compatible = "arm,pl011", "arm,sbsa-uart";
			status = "okay";
			reg = <0x0 0xff000000 0x0 0x1000>;
			interrupts = <0x0 0x12 0x4>;
			clock-names = "uart_clk", "apb_clk";
			current-speed = <0x1c200>;
			clocks = <0x3 0x5c 0x3 0x52>;
			power-domains = <0x7 0x18224021>;
			cts-override;
			device_type = "serial";
			port-number = <0x0>;

			firewall-0 = <&lpd_xppu>;
		};

		serial1: serial@ff010000 {
			compatible = "arm,pl011", "arm,sbsa-uart";
			status = "disabled";
			reg = <0x0 0xff010000 0x0 0x1000>;
			interrupts = <0x0 0x13 0x4>;
			clock-names = "uart_clk", "apb_clk";
			current-speed = <0x1c200>;
			clocks = <0x3 0x5d 0x3 0x52>;
			power-domains = <0x7 0x18224022>;
		};

		qspi: spi@f1010000 {
			compatible = "xlnx,versal-ospi-1.0", "cadence,qspi",
				     "cdns,qspi-nor";
			status = "okay";
			reg = <0x0 0xf1010000 0x0 0x10000 0x0 0xc0000000 0x0 0x20000000>;
			interrupts = <0x0 0x7c 0x4 0x0 0x7c 0x4>;
			clock-names = "ref_clk", "pclk";
			cdns,fifo-depth = <0x100>;
			cdns,fifo-width = <0x4>;
			cdns,is-dma = <0x1>;
			cdns,is-stig-pgm = <0x1>;
			cdns,trigger-address = <0xc0000000>;
			#stream-id-cells = <0x1>;
			#address-cells = <0x1>;
			#size-cells = <0x0>;
			iommus = <&iommu 0x244>;
			bus-num = <0x2>;
			num-cs = <0x1>;
			reset-gpios = <0x19 0xc 0x0>;
			clocks = <0x3 0x3a 0x3 0x52>;
			power-domains = <0x7 0x1822402a>;

			flash@0 {
				compatible = "mt35xu02g", "micron,m25p80", "spi-flash";
				reg = <0x0>;
				#address-cells = <0x1>;
				#size-cells = <0x1>;
				cdns,read-delay = <0x0>;
				cdns,tshsl-ns = <0x0>;
				cdns,tsd2d-ns = <0x0>;
				cdns,tchsh-ns = <0x1>;
				cdns,tslch-ns = <0x1>;
				spi-tx-bus-width = <0x1>;
				spi-rx-bus-width = <0x8>;
				spi-max-frequency = <0x1312d00>;

				partition@0 {
					label = "ospi-fsbl-uboot-boot.bin";
					reg = <0x0 0x6400000>;
				};

				partition@6400000 {
					label = "ospi-linux";
					reg = <0x6400000 0x500000>;
				};

				partition@6900000 {
					label = "ospi-device-tree";
					reg = <0x6900000 0x20000>;
				};

				partition@6920000 {
					label = "ospi-rootfs";
					reg = <0x6920000 0xa00000>;
				};

				partition@7f40000 {
					label = "ospi-bootenv";
					reg = <0x7f40000 0x40000>;
				};
			};
		};

		spi@f1030000 {
			compatible = "xlnx,versal-qspi-1.0";
			status = "disabled";
			reg = <0x0 0xf1030000 0x0 0x1000>;
			interrupts = <0x0 0x7d 0x4 0x0 0x7d 0x4>;
			clock-names = "ref_clk", "pclk";
			#stream-id-cells = <0x1>;
			#address-cells = <0x1>;
			#size-cells = <0x0>;
			clocks = <0x3 0x39 0x3 0x52>;
			power-domains = <0x7 0x1822402b>;
			phandle = <0xe>;
		};

		spi@ff040000 {
			compatible = "cdns,spi-r1p6";
			status = "disabled";
			reg = <0x0 0xff040000 0x0 0x1000>;
			interrupts = <0x0 0x10 0x4>;
			clock-names = "ref_clk", "pclk";
			#address-cells = <0x1>;
			#size-cells = <0x0>;
			clocks = <0x3 0x5e 0x3 0x52>;
			power-domains = <0x7 0x1822401b>;
		};

		spi@ff050000 {
			compatible = "cdns,spi-r1p6";
			status = "disabled";
			reg = <0x0 0xff050000 0x0 0x1000>;
			interrupts = <0x0 0x11 0x4>;
			clock-names = "ref_clk", "pclk";
			#address-cells = <0x1>;
			#size-cells = <0x0>;
			clocks = <0x3 0x5f 0x3 0x52>;
			power-domains = <0x7 0x1822401c>;
		};

		usb@ff9d0000 {
			compatible = "xlnx,versal-dwc3";
			status = "okay";
			reg = <0x0 0xff9d0000 0x0 0x100>;
			clock-names = "bus_clk", "ref_clk";
			ranges;
			#address-cells = <0x2>;
			#size-cells = <0x2>;
			iommus = <&iommu 0x230>;
			xlnx,usb-polarity = <0x0>;
			xlnx,usb-reset-mode = <0x0>;
			clocks = <0x3 0x5b 0x3 0x68>;
			power-domains = <0x7 0x18224018>;
			phandle = <0xd>;

			dwc3@fe200000 {
				compatible = "snps,dwc3";
				status = "okay";
				reg = <0x0 0xfe200000 0x0 0x10000>;
				interrupt-names = "dwc_usb3", "otg", "usb-wakeup";
				interrupts = <0x0 0x16 0x4 0x0 0x1a 0x4 0x0 0x4a 0x4>;
				#stream-id-cells = <0x1>;
				snps,dis_u2_susphy_quirk;
				snps,dis_u3_susphy_quirk;
				snps,quirk-frame-length-adjustment = <0x20>;
				snps,refclk_fladj;
				snps,mask_phy_reset;
				dr_mode = "host";
				maximum-speed = "high-speed";
				snps,usb3_lpm_capable;
				phy-names = "usb3-phy";
			};
		};

		pci@fca10000 {
			#address-cells = <0x3>;
			#interrupt-cells = <0x1>;
			#size-cells = <0x2>;
			compatible = "xlnx,versal-cpm-host-1.00";
			status = "disabled";
			interrupt-map = <0x0 0x0 0x0 0x1 0x1a 0x1
					 0x0 0x0 0x0 0x2 0x1a 0x2
					 0x0 0x0 0x0 0x3 0x1a 0x3
					 0x0 0x0 0x0 0x4 0x1a 0x4>;
			interrupt-map-mask = <0x0 0x0 0x0 0x7>;
			interrupt-names = "misc";
			interrupts = <0x0 0x48 0x4>;
			ranges = <0x2000000 0x0 0xe0000000 0x0 0xe0000000 0x0 0x10000000
				  0x43000000 0x80 0x0 0x80 0x0 0x0 0x80000000>;
			msi-map = <0x0 0x1b 0x0 0x10000>;
			reg = <0x6 0x0 0x0 0x1000000 0x0 0xfca10000 0x0 0x1000>;
			reg-names = "cfg", "cpm_slcr";

			pci-interrupt-controller {
				#address-cells = <0x0>;
				#interrupt-cells = <0x1>;
				interrupt-controller;
				phandle = <0x1a>;
			};
		};

		watchdog@fd4d0000 {
			compatible = "xlnx,versal-wwdt-1.0";
			status = "okay";
			reg = <0x0 0xfd4d0000 0x0 0x10000>;
			timeout-sec = <0x3c>;
			clocks = <0x3 0x52>;
			power-domains = <0x7 0x18224029>;
		};

		tcm: tcm@ffe90000 {
			compatible = "mmio-sram";
			reg = <0x0 0xffe90000 0x0 0x10000>;
		};

		zynqmp-power {
			compatible = "xlnx,zynqmp-power";
			interrupts = <0x0 0x1e 0x4>;
			mboxes = <0x1f 0x0 0x1f 0x1>;
			mbox-names = "tx", "rx";
			phandle = <0x7>;
			#power-domain-cells = <0x1>;
		};
	};

	domains {
		#address-cells = <0x2>;
		#size-cells = <0x2>;

		subsystem1: domain-1 {
			compatible = "xilinx,subsystem-v1", "openamp,domain-v1";

			/*
			 * When the domain is a xilinx,subsystem, then the specified
			 * CPU level is expected to be the highest possible in the
			 * cluster.
			 *
			 * bit 0-3: EL
			 * bit 31: secure/non-secure
			 */
			cpus = <&cpus_a72 0x3 0x80000003>;
			memory = <0x0 0x500000 0x0 0x7fb00000>;

			#access-flags-cells = <1>;
			access = <&mmc0 0x1>;
			id = <0x3>;

			/* 2: block-desirable */
			firewallconfig-default = <2 8>;

			xen: domain-2 {
				compatible = "openamp,domain-v1";

				cpus = <&cpus_a72 0x3 0x00000002>;
				memory = <0x0 0x500000 0x0 0x7fb00000>;
				id = <0xffff>;
				#access-flags-cells = <0>;
				access = <&mmc0>;

				linux1: domain-3 {
					compatible = "openamp,domain-v1";

					cpus = <&cpus_a72 0x3 0x00000001>;
					memory = <0x0 0x501000 0x0 0x3faff000
							  0x0 0x500000 0x0 0x1000>;
					id = <0x0>;

					#access-flags-cells = <0>;
					access = <&mmc0>;
				};

				linux2: domain-4 {
					compatible = "openamp,domain-v1";

					cpus = <&cpus_a72 0x3 0x00000001>;
					memory = <0x0 0x40000000 0x0 0x40000000
							  0x0 0x500000 0x0 0x1000>;
					id = <0x1>;

					access = <&ethernet0 &serial0>;
					/* 1: block */
					firewallconfig = <&linux1 1 0>;
				};
			};
		};

		subsystem2: domain-5 {
			compatible = "xilinx,subsystem-v1", "openamp,domain-v1";

			cpus = <&cpus_r5 0x3 0x80000001 &microblaze0 0x1 0x00000000>;
			memory = <0x0 0x100000 0x0 0x400000>;
			id = <0x4>;

			#access-flags-cells = <0x1>;
			access = <&can0 0x0 &ethernet0 0x0 &serial0 0x0>;
			/* 1: block */
			firewallconfig-default = <1 0>;
		};
	};

	aliases {
		serial0 = "/axi-bus/serial@ff000000";
		ethernet0 = "/axi-bus/ethernet@ff0c0000";
		ethernet1 = "/axi-bus/ethernet@ff0d0000";
		i2c0 = "/axi-bus/i2c@ff030000";
		mmc0 = "/axi-bus/sdhci@f1050000";
		spi0 = "/axi-bus/spi@f1010000";
		usb0 = "/axi-bus/usb@ff9d0000";
		rtc0 = "/axi-bus/rtc@f12a0000";
	};

	alt_ref_clk {
		compatible = "fixed-clock";
		#clock-cells = <0x0>;
		clock-frequency = <0x1fca055>;
		phandle = <0x1d>;
	};

	pl_alt_ref_clk {
		compatible = "fixed-clock";
		#clock-cells = <0x0>;
		clock-frequency = <0x1fca055>;
		phandle = <0x1e>;
	};

	ref_clk {
		compatible = "fixed-clock";
		#clock-cells = <0x0>;
		clock-frequency = <0x1fca055>;
		phandle = <0x1c>;
	};

	can0_clk {
		#clock-cells = <0x0>;
		compatible = "fixed-factor-clock";
		clocks = <0x3 0x60>;
		clock-div = <0x2>;
		clock-mult = <0x1>;
		phandle = <0x6>;
	};

	can1_clk {
		#clock-cells = <0x0>;
		compatible = "fixed-factor-clock";
		clocks = <0x3 0x61>;
		clock-div = <0x2>;
		clock-mult = <0x1>;
		phandle = <0x8>;
	};

	clock-controller {
		#clock-cells = <0x1>;
		compatible = "xlnx,versal-clk";
		clocks = <0x1c 0x1d 0x1e>;
		clock-names = "ref_clk", "alt_ref_clk", "pl_alt_ref_clk";
		phandle = <0x3>;
	};

	memory: memory@0 {
		device_type = "memory";
		reg = <0x0 0x0 0x0 0x80000000>;
	};
};








            

          

      


      

    

  

  
    
    

    1. Introduction
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
1. Introduction


1.1. Purpose and Scope

This document, the System Devicetree Specification, extends the
Devicetree Specification to handle heterogeneous SoCs with
multiple CPUs, possibly of different architectures, as well as the
execution domains running on the CPUs.

An execution domain can be seen as an address space that is running a
software image, whether an operating system, a hypervisor, or firmware
that has a set of CPUs, memory and devices attached to it.



1.2. Relationship to the Devicetree Specification

The System Devicetree Specification is an extension of the Devicetree
Specification [DTSpec]. A system devicetree is written in the DTS
format defined by the Devicetree Specification, but contains extra
information and enhanced semantics in order to address the use cases
introduced above.

This document uses the terms base specification to refer to the
Devicetree Specification, and standard devicetree to refer to a
devicetree that complies with the base specification and does not
include any of the extensions defined in the System Devicetree
Specification.

A design goal of this specification is that it should be possible to
adopt it in ways that do not require existing devicetree clients to
change, while also allowing clients that are aware of this specification
to take advantage of the extra information present in a system
devicetree. In particular, Linux’s [Linux] devicetree implementation
will not require changes as a result of this document, since a running
Linux kernel will be provided with a DTB that it can handle with
the current implementation, potentially with some extra information it
can ignore.



1.3. Summary of Extensions

This document defines the following main extensions to the base
specification:


	Additional bindings for describing multiple distinct CPU clusters
in a single heterogeneous SoC, as well as the memories and devices
connected to them.

This information is usually provided by the SoC vendor, and
is typically fixed for a given SoC.



	Additional nodes which define the execution domains running on the
SoC and assign hardware resources to them. This is done through a new
node, /domains, and additional bindings related to it.

This information is usually provided by the board designer or another
user of the SoC, and typically differs by use case. For example, the
memory allocated to a general purpose operating system and an RTOS
running on separate CPU cores on an SoC can be described via this
node. This allocation may differ across designs based on the SoC, or
between boots on the same design.







1.4. Usage Environments

The concepts defined in this specification are intended to be used in
two main environments:


	Exclusively on the host system in a cross-compilation development
environment targeting a heterogeneous SoC as the target device.

In this use case, a tool like Lopper [Lopper] running on the host
converts the system devicetree into one or more standard devicetrees.
Using Lopper, a standard devicetree can be created for each execution
domain, with a single address space, one /cpus node instead of
multiple CPU cluster nodes, etc. Lopper also has pluggable backends,
so it can also generate information derived from the devicetree in
other formats, such as a C header file defining macros that can be
included and compiled in to an RTOS.



	In a “master” target environment that manages multiple execution
domains.

Such an environment typically has access to all hardware resources
(CPUs, memories, devices, etc.) on the SoC. It will typically assign
these resources to the other execution domains it manages, then
prevent itself from accessing them.

An example of such a target environment is firmware running on the
SoC may consume the system devicetree in order to set up hardware
protection and use it to restart individual domains. For example, the
firmware may protect a general purpose operating system domain’s
memory, so an RTOS running on different CPUs cannot access it.

Other examples are other operating systems or hypervisors that
manage execution domains:



	A Xen hypervisor [Xen] can use /domains to get information
about the Xen guests (also called domains)


	A Linux kernel could use the default domain for its own
configuration and other domains to manage additional CPUs on the
SoC. Since system devicetrees are backwards compatible with
standard devicetrees, the only changes needed in Linux would be
any new code taking advantage of the information in /domains.













1.5. Definition of Terms


	base specification
	The Devicetree Specification [DTSpec], which this document extends.



	binding
	Devicetree binding. See [DTSpec].



	DTS
	Devicetree syntax. See [DTSpec].



	DTB
	Devicetree blob. See [DTSpec].



	execution domain
	a collection of software, firmware, and board configurations that
enable an operating system or an application to run a cpus cluster



	node
	Devicetree node. See [DTSpec].



	SoC
	System on chip.



	SMP
	Symmetric multiprocessing.



	standard devicetree
	A devicetree that complies with the base Devicetree Specification and
does not include any of the extensions defined in the System Devicetree
Specification.









            

          

      


      

    

  

  
    
    

    2. Hardware Description
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
2. Hardware Description

System devicetrees can describe SoCs with multiple CPUs, possibly of
different architectures, and possibly multiple processors in SMP
configurations. System devicetrees additionally describe the address
maps for each CPU in the SoC. This is necessary, for example, because
a single device’s registers could be mapped to different addresses in
different CPU memory maps. As another example, a device may only be
accessible by a subset of the CPUs in the SoC.

This description is done using additional devicetree bindings defined
in this section. The new bindings allow defining:


	Multiple top level nodes which describe the CPUs on the SoC


	Buses containing devices that do not automatically map to the parent
address space (that is, may not be present in all CPU memory maps).


	Interrupt mappings to multiple CPU clusters




See Section 2.5 for system devicetrees using these
bindings.


2.1. CPU Cluster Binding

A CPU cluster is a node which describes one or more CPUs on the SoC
that share an address space and other attributes. Typically, a CPU
cluster node that describes multiple CPUs reflects multiple processors
in an SMP configuration on the SoC.

See Section 2.2 for examples.


2.1.1. CPU Cluster Properties

CPU clusters should be represented in a system devicetree in top-level
nodes using the following properties.


CPU Cluster Properties

	Property Name

	Usage

	Value Type

	Definition





	compatible

	R

	<string list>

	Value shall include “cpus,cluster”.
See [DTSpec] §2.3.1.



	#address-cells

	R

	<u32>

	Shall be 1. See [DTSpec] §2.3.5.



	#size-cells

	R

	<u32>

	Shall be 0. See [DTSpec] §2.3.5.



	address-map

	SD

	<prop encoded
array>

	See Section 2.1.3. Specifies the
addresses of hardware resources within the CPU
cluster’s memory map.



	#ranges-address-cells

	SD

	<u32>

	See Section 2.1.4. Specifies
the number of <u32> cells used to represent
a physical address within the CPU cluster.



	#ranges-size-cells

	SD

	<u32>

	See Section 2.1.5. Specifies the
number of <u32> cells used to represent the
size of a physical address range within the
CPU cluster.



	Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition







Note

The following additional standard properties defined in the
base specification are allowed but optional: model,
phandle, status.





2.1.2. CPU Node Properties

The child nodes of a CPU cluster node describe the individual CPUs
within the cluster. They are represented identically to the
/cpus/cpu* nodes in a standard devicetree. See [DTSpec] §3.8 and
§3.9 for details.



2.1.3. address-map Property


address-map Property

	Property

	address-map





	Value type

	<prop-encoded-array> encoded as an arbitrary number of
(node-address, ref-node, root-node-address, length)
quartets.



	Description

	Provides a means of defining a translation between the
address space of a CPU cluster and the address space of
the root node (recall that the root node is the parent
node of the CPU cluster).

The address-map property can be used to create a
mapping between the address space of a CPU cluster node
and the address spaces of hardware resources such as
memory, devices, and buses containing other resources as
child nodes.

If a hardware resource in the system devicetree
is not explicitly mapped into the CPU cluster’s
address space using this property, it should be treated
as if it is not addressable by the CPUs in the cluster.

The address ranges defined by multiple quartets within
a single address-map property may overlap.




	Example

	See Section 2.2.






The format of the value of the address-map property is an arbitrary
number of quartets, each of which specifies a mapping between the CPU
cluster’s address space and another address space.

Within each quartet:


	node-address is a physical address within the CPU cluster’s address
space (the CPU cluster is the node in which the address-map property
appears). This is the starting address within the CPU cluster’s memory
map that the resources described by the quartet appear.

The number of cells used to represent the address is determined by the
#ranges-address-cells property of the CPU cluster node (see
Section 2.1.4).



	ref-node is a phandle to the node describing the resources whose
addresses are mapped into the CPU cluster’s address space. This
describes the resources whose addresses are being mapped into the CPU
cluster, either directly as a memory or device node, or indirectly as
a bus node containing these.


	root-node-address is a physical address within the root node’s
address space. The number of cells used to represent the address is
determined by the #address-cells property of the root node. This is
the starting address, within the root node’s address space, of the
resources whose addresses are being mapped in.


	length is the size of the range in the CPU cluster’s address space.
This is the length of the address range being mapped in.

The number of cells used to represent the size of the range is
determined by the #ranges-size-cells property of the CPU cluster
node (see Section 2.1.5).

Any resources with register block addresses fall in the range starting
at root-node-address and ending length bytes later are visible to
all CPUs within the cluster at the addresses specified by the mapping
entry. Register blocks which appear after the end of the range are not
visible. A register block which starts within the range but extends
past the range’s end is truncated to fit within the range in the
memory map of the CPU cluster node.







2.1.4. #ranges-address-cells Property


#ranges-address-cells Property

	Property

	#ranges-address-cells





	Value type

	<u32>



	Description

	The number of cells used to represent an address within
the memory map of a CPU cluster node (the node in which the
#ranges-address-cells property appears). This should
be large enough to represent the maximum size of an address
in the data model of the cluster’s CPU nodes.



	Example

	CPUs have 64-bit addresses: #ranges-address-cells = <2>;








2.1.5. #ranges-size-cells Property


#ranges-size-cells Property

	Property

	#ranges-size-cells





	Value type

	<u32>



	Description

	The number of cells used to represent the size of a range of
addresses in the memory map of a CPU cluster node (the node
in which the #ranges-size-cells property appears), in bytes.

This must be large enough to specify all address ranges
within the CPU cluster node’s address-map property.




	Example

	32-bit address range sizes: #ranges-size-cells = <1>;









2.2. Example CPU Clusters


2.2.1. Single-core Arm Cortex-M3

Here is a simplified example of a single CPU cluster with one CPU.

The root node has #address-cells set to 1.

cpu-cluster-arm {
        #address-cells = <0x1>;
        #size-cells = <0x0>;
        compatible = "cpus,cluster";

        #ranges-address-cells = <0x1>;
        #ranges-size-cells = <0x1>;

        address-map = <0x0 &code 0x0 0x40000>,
                      <0x20000000 &sram 0x0 0x10000>,
                      <0x40000000 &peripherals 0x1000 0x4000>;

        cpu@0 {
                compatible = "arm,cortex-m3";
                device_type = "cpu";
                reg = <0x0>;
        };
};





The CPU’s address map contains:


	a 256 KB code range, starting at address 0x0


	a 128 KB SRAM range, starting at address 0x20000000


	a 16 KB peripheral range, starting at address 0x40000000




The phandles to code, sram, and peripherals refer to other
nodes in the devicetree which contain the resources of interest. Their
contents are not shown in this example.



2.2.2. Dual-core Arm Cortex-R5

Here is an example CPU cluster node with two CPU child nodes. This
represents two Arm Cortex-R5 cores with shared memory and
device access.

The root node has #address-cells set to 1.

cpus-cluster-r5 {
        #address-cells = <0x1>;
        #size-cells = <0x0>;
        compatible = "cpus,cluster";

        #ranges-address-cells = <0x1>;
        #ranges-size-cells = <0x1>;

        address-map = <0xf1000000 &amba 0xf1000000 0xeb00000>,
                      <0x0 &memory 0x0 0x80000000>;

        cpu@0 {
                compatible = "arm,cortex-r5";
                device_type = "cpu";
                reg = <0x0>;
        };

        cpu@1 {
                compatible = "arm,cortex-r5";
                device_type = "cpu";
                reg = <0x1>;
        };
};





Each of the two CPU’s address maps contains:


	a 235 MiB range containing resources within an amba bus node


	a 2 GiB memory range, starting at address 0x0




The addressable resources for each CPU are identical.

Again, the phandles to amba and memory refer to nodes elsewhere
in the devicetree that are not shown in this example.




2.3. Indirect Bus Binding

An indirect bus is a node in the system devicetree which acts as a
resource container. This is similar to the “simple-bus” compatible value
defined in [DTSpec] §4.5.

However, unlike “simple-bus” nodes, the resources inside an indirect bus
do not map into the parent node’s address space. The devices on the
bus can only be accessed directly by CPUs within CPU clusters whose
address-map properties explicitly include the devices.


2.3.1. Indirect Bus Properties

CPU clusters should be represented in a system devicetree in top-level
nodes using the following properties.


CPU Cluster Properties

	Property Name

	Usage

	Value Type

	Definition





	compatible

	R

	<string list>

	Value shall include “indirect-bus”.



	#address-cells

	R

	<u32>

	See [DTSpec] §2.3.5.



	#size-cells

	R

	<u32>

	See [DTSpec] §2.3.5.



	Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition







Note

Additional standard properties defined in the base
specification §2.3 are allowed but optional.






2.4. The Default Cluster, /cpus

Within a system devicetree, the /cpus node is the default CPU
cluster. As in a standard devicetree, this node can access the resources
contained in any “simple-bus” node directly. However, this node does not
have direct access to any resources defined within any “indirect-bus”
nodes by default. Within a system devicetree, the default cluster can
contain an address-map property if resources from indirect bus nodes
are visible to the corresponding CPUs.



2.5. Example System Devicetree Hardware Descriptions


2.5.1. Simple example

Here is a simplified example involving a single-core CPU cluster with
three resource nodes. This is based on
Section 2.2.1, but was extended to show the
resource nodes.

cpu-cluster-arm {
        #address-cells = <0x1>;
        #size-cells = <0x0>;
        compatible = "cpus,cluster";

        #ranges-size-cells = <0x1>;
        #ranges-address-cells = <0x1>;

        address-map = <0x0 &code 0x0 0x40000>,
                      <0x20000000 &sram 0x0 0x10000>,
                      <0x40000000 &peripherals 0x1000 0x4000>;

        cpu@0 {
                compatible = "arm,cortex-m3";
                device_type = "cpu";
                reg = <0x0>;
        };
};

code: code-bus {
        compatible = "indirect-bus";
        #address-cells = <1>;
        #size-cells = <1>;

        flash@0 {
                compatible = "...";
                reg = <0x0 0x40000>;
        };
};

sram: sram-bus {
        compatible = "indirect-bus";
        #address-cells = <1>;
        #size-cells = <1>;

        sram@0 {
                compatible = "mmio-sram";
                reg = <0x0 0x10000>;
        };

        sram@10000 {
                compatible = "mmio-sram";
                reg = <0x10000 0x10000>;
        };
};

peripherals: peripheral-bus {
        compatible = "indirect-bus";
        #address-cells = <1>;
        #size-cells = <1>;

        serial@0 {
                compatible = "...";
                reg = <0x0 0x1000>;
        };

        serial@2000 {
                compatible = "...";
                reg = <0x2000 0x1000>;
        };
};





In this example:


	the on-chip NOR flash device flash@0 is visible starting at
address 0x0 in the CPU cluster’s address space


	the SRAM sram@0 is visible starting at 0x20000000


	the SRAM sram@10000 is not visible to the CPU cluster,
because its address-map property constrains the sram
address range to 0x10000 bytes in size


	the serial ports serial@0 and serial@2000 are visible
starting at 0x40001000 and 0x40003000, respectively






2.5.2. More complex example

Here is another example. Some properties have been omitted for brevity.

/* default cluster */
cpus {
        #address-cells = <1>;
        #size-cells = <0>;

        cpu@0 {
                reg = <0>;
        };
        cpu@1 {
                reg = <1>;
        };
};

/* additional R5 cluster */
cpus_r5: cpus-cluster-r5 {
        compatible = "cpus,cluster";
        #address-cells = <1>;
        #size-cells = <0>;

        /* specifies address mappings */
        address-map = <0xf9000000 &amba_rpu 0xf9000000 0x10000>;

        cpu@0 {
                reg = <0>;
        };

        cpu@1 {
                reg = <1>;
        };
};

amba_rpu: rpu-bus {
        compatible = "indirect-bus";
};





In this example, there are:


	two CPU cluster nodes; one of them is the default cluster, /cpus,
and the other is cpus_r5


	an indirect bus, amba_rpu which is not visible to the default cluster


	the cpus_r5 cluster can see the amba_rpu bus, because it is
explicitly mapped using the address-map property




As discussed above, devices only physically accessible from one of the
two clusters should be placed under an “indirect-bus” appropriately.

For instance, we can extend the above to show how the interrupt tree and
interrupt mapping can be described for multiple CPU clusters using the
definitions in [DTSpec] §2.4:

/* default cluster */
cpus {
};

/* additional R5 cluster */
cpus_r5: cpus-cluster-r5 {
        compatible = "cpus,cluster";

        /* specifies address mappings */
        address-map = <0xf9000000 &amba_rpu 0xf9000000 0x10000>;
};

/* bus only accessible by cpus */
amba_apu: apu-bus {
        compatible = "simple-bus";

        gic_a72: interrupt-controller@f9000000 {
        };
};

/* bus only accessible by cpus_r5 */
amba_rpu: rpu-bus {
        compatible = "indirect-bus";

        gic_r5: interrupt-controller@f9000000 {
        };
};





Note that:


	gic_a72 is visible to /cpus, but not to cpus_r5, because
amba_apu is not present in the address-map property of cpus_r5.


	gic_r5 is visible to cpus_r5, because it is present in the
address-map property of cpus_r5


	gic_r5 is not visible to /cpus because indirect bus nodes do
not automatically map to the parent address space, and /cpus
doesn’t have an address-map property




Relying on the fact that each interrupt controller is visible to its CPU
cluster node, it is possible to express interrupt routing from a device
to multiple clusters. For instance:

amba: axi-bus {
        compatible = "simple-bus";
        #address-cells = <2>;
        #size-cells = <2>;
        ranges;

        #interrupt-cells = <3>;
        interrupt-map-pass-thru = <0xffffffff 0xffffffff 0xffffffff>;
        interrupt-map-mask = <0x0 0x0 0x0>;
        interrupt-map = <0x0 0x0 0x0 &gic_a72 0x0 0x0 0x0>,
                        <0x0 0x0 0x0 &gic_r5 0x0 0x0 0x0>;

        can0: can@ff060000 {
                compatible = "xlnx,canfd-2.0";
                reg = <0x0 0xff060000 0x0 0x6000>;
                interrupts = <0x0 0x14 0x1>;
        };
};





In this example, all devices under amba, including can@ff060000,
have their interrupts routed to both gic_r5 and gic_a72.






            

          

      


      

    

  

  
    
    

    3. Execution Domains
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
3. Execution Domains

An execution domain is a node which describes a software or firmware
image running on a CPU cluster, along with a collection of configuration
values that enable an operating system or an application to run on CPU
cores in the cluster.

For example, execution domains can be defined for:


	software or firmware images running at different execution levels on
an Arm v8-A architecture CPU


	firmware images running in the secure and non-secure CPU states on
an Arm v8-M architecture CPU with TrustZone


	other trusted and untrusted environments


	software or firmware running on individual CPUs that are not part of
SMP clusters


	a kernel or RTOS application running on a subset of CPUs within an SMP
cluster




Each CPU cluster node can have one or more associated execution domains.
Multiple execution domains associated with the same cluster can result,
for example:


	from virtualization or non-lockstep execution on CPU clusters that
support it


	from a multi-stage boot on a microcontroller, where an execution
domain for a bootloader permanently yields control of a CPU to an
execution domain running a later stage firmware image


	when partitioning the CPUs in an SMP cluster into subsets, each of
which has its own distinct software or firwmare





3.1. Example

Execution domains are expressed by a new binding for the
“openamp,domain-v1” value for the compatible property. Domains are
placed under a new top-level node within a system devicetree:
/domains. Here is an example:

domains {
        openamp_r5 {
                compatible = "openamp,domain-v1";
                cpus = <&cpus_r5 0x2 0x80000000>;

                #memory-flags-cells = <0>;
                memory = <0x0 0x0 0x0 0x8000000>;

                #access-flags-cells = <1>;
                access = <&can0 0x3 &ethernet0 0x7>;

                id = <0x1>;
        };
};





As shown above, openamp_r5 contains information about:


	the physical CPUs the software is running on, via cpus


	memories assigned to the domain, via memory


	devices that should only be accessible by the domain, via access




Domains can be nested recursively within other nodes under /domains.



3.2. Execution Domain Binding, v1


Execution Domain v1 Properties

	Property Name

	Usage

	Value Type

	Definition





	compatible

	R

	<string list>

	Value shall include “openamp,domain-v1”.
See [DTSpec] §2.3.1.



	cpus

	SD

	<prop encoded
array>

	See Section 3.2.1. Specifies the
CPU cluster on which the domain software runs.



	#access-flags-cells

	O

	<u32>

	Specifies the number of <u32> cells used
to represent the access flags for each
device in the access property. If absent,
the default value is zero.



	access

	SD

	<prop encoded
array>

	See Section 3.2.2. Specifies
devices configured to only be accessible
by this domain (the node in which the
access property appears).



	#memory-flags-cells

	O

	<u32>

	Specifies the number of <u32> cells used
to represent the flags for each memory
range in the memory property. If absent,
the default value is zero.



	memory

	SD

	<prop encoded
array>

	See Section 3.2.3. Specifies
the memory assigned to the domain.



	#sram-flags-cells

	O

	<u32>

	Specifies the number of <u32> cells used
to represent the flags for each SRAM
range in the sram property. If absent,
the default value is zero.



	sram

	SD

	<prop encoded
array>

	See Section 3.2.4. Specifies
the MMIO SRAM assigned to the domain.



	id

	R

	<u32>

	A 32-bit integer that uniquely
identifies the domain



	os,type

	SD

	<string>

	See Section 3.2.5



	#access-implicit-default-cells

	SD

	<u32>

	See Section 3.2.6



	access-implicit-default

	SD

	array

	See Section 3.2.6



	#memory-implicit-default-cells

	SD

	<u32>

	See Section 3.2.6



	memory-implicit-default

	SD

	array

	See Section 3.2.6



	#sram-implicit-default-cells

	SD

	<u32>

	See Section 3.2.6



	sram-implicit-default

	SD

	array

	See Section 3.2.6



	Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition







Note

The system devicetree bindings which define execution domains
are separate from the bindings used for hardware description
(see Section 2) for two main reasons:


	A different persona will add and edit the information


	configuration should be separated from hardware description,
since it has a different rate of change







3.2.1. cpus Property


cpus Property

	Property

	cpus





	Value type

	<prop-encoded-array> encoded as a
(cpu-cluster, cpu-mask, execution-level) triplet.



	Description

	Required; defines the physical CPUs this domain (the domain
in which the cpus property appears) runs on.



	Example

	cpus = <&cluster 0xF 0x80000000>;






Within the triplet:


	cpu-cluster is a phandle to a CPU cluster node


	cpu-mask is a bitfield indicating the subset of CPUs in the cluster which
the domain runs on


	execution-level is a cluster-specific execution level for the domain




The execution level is the most privileged level that the domain can
make use of. The permissible values for the execution-level cell in a
cpus property depend on the CPU cluster hardware. The following
permissible values are provided for some CPU architectures. To add other
CPU architectures, this specification should be amended.

For Arm Cortex-R5 CPUs, execution-level is a bit map
where:


	bit 31: secure (1) / non-secure (0)


	bit 30: lockstep (1) / split (0)


	bits 1 through 29: reserved, must be zero




For Arm Cortex-A53 and -A72 CPUs, execution-level is
a bit map where:


	bit 31: secure (1) / non-secure (0)


	bits 2 through 30: reserved, must be zero


	bits 0-1: EL0 (0x0), EL1 (0x1), or EL2 (0x2)






3.2.2. access Property


access Property

	Property

	access





	Value type

	Optional <prop-encoded-array> encoded as an arbitrary
number of (device, flags) pairs.



	Description

	A list of devices the domain shall have exclusive access to,
using bus firewalls or other similar technologies.



	Example

	access = <&mmc0>;






Within each pair:


	device is a phandle to the device node


	flags contains domain-specific flags. The number of cells in each flag is
defined by the #access-flags-cells property of this domain (the domain in
which the access property appears).






3.2.3. memory Property


memory Property

	Property

	memory





	Value type

	Optional <prop-encoded-array> encoded as an arbitrary
number of (start, size, flags) triplets.



	Description

	An array of memory ranges assigned to the execution domain
(the node in which the memory property appears). This must
be a subset of the physical memory present in the system.



	Example

	memory = <0x0 0x0 0x0 0x8000000 0x8 0x0 0x0 0x10000 0x0>;






Within each triplet:


	start is the physical address of the start of the memory range. The
number of cells used to represent the start address is determined by
the #address-cells property.


	size is the size of the memory range, in bytes. The number of cells
used to represent the size is determined by the #size-cells
property.


	flags contains domain-specific flags. The number of cells in each flag is
defined by the #memory-flags-cells property of the execution domain.




Note that the memory property can also be used to express memory
sharing between domains. For example:

domains {
        openamp_r5 {
                compatible = "openamp,domain-v1";
                memory = <0x0 0x0 0x0 0x8000000 0x8 0x0 0x0 0x10000 0x0>;
                id = <0x2>;
        };
        openamp_a72 {
                compatible = "openamp,domain-v1";
                memory = <0x0 0x8000000 0x0 0x80000000 0x8 0x0 0x0 0x10000 0x0>;
                id = <0x3>;
        };
};





In this example, a 16 pages range starting at 0x800000000 is shared
between two domains.



3.2.4. sram Property


sram Property

	Property

	sram





	Value type

	Optional <prop-encoded-array> encoded as an arbitrary
number of (start, size, flags) triplets.



	Description

	An array of sram ranges assigned to the execution domain
(the node in which the sram property appears). This must
be a subset of the physical SRAM memory present in the system.



	Example

	sram = <0x0 0x0 0x0 0x8000000 0x8 0x0 0x0 0x10000 0x0>;






Within each triplet:


	start is the physical address of the start of the memory range. The
number of cells used to represent the start address is determined by
the #address-cells property.


	size is the size of the memory range, in bytes. The number of cells
used to represent the size is determined by the #size-cells
property.


	flags contains domain-specific flags. The number of cells in each flag is
defined by the #sram-flags-cells property of the execution domain.






3.2.5. os,type Property

Execution domains can have an optional “os,type” property, which
describes one or more operating systems that may run on the domain.

The field may be used by automated tooling for activities such as
verifying that the domain is capable of running the operating system,
configuring a build system to produce the proper operating system,
configuring a storage mechanism to include the specified operating
system, or other purposes.

The value of os,type is a string defined in the format:

OS_TYPE[,TYPE_ID[,TYPE_ID_VERSION]]





OS_TYPE is mandatory. It defines the operating system’s type. Its
value must match one of the following:

OS_TYPE:
   baremetal
   linux
   freertos
   zephyr
   custom
   x-<vendor>[-os]





This specification should be updated if additional types are required.


	baremetal refers to a direct application that executes on the system
with no conventional operating system. Examples of this may include a
first stage boot loader, a second stage boot loader, U-Boot [U-Boot],
Trusted Firmware-A [TF-A], etc.


	linux refers to a Linux based operating system. Examples of this may
include Yocto Project [Yocto] derived distributions, Red Hat
Enterprise Linux [RHEL], Ubuntu [Ubuntu] distributions, etc.


	freertos refers to the FreeRTOS [FreeRTOS] real-time operating system


	zephyr refers to the Zephyr [Zephyr] real-time operating system


	custom refers to a user specific operating system. Custom must
only be used by the group providing the operating system
implementation. Each usage of custom will be different.


	*x-<vendor>[-os] refers to an extension of a non-registered vendor
specific operating system. The ‘x’ refers to extension, which is
attempts to avoid namespace collisions by convention. The mandatory
<vendor> component identifies the operating system vendor, for
example x-xilinx. However, the vendor name may not be a specific
enough namespace to avoid collision, so an optional -os is allowed
as well. The <vendor> controls the namespace of -os values, if
they are used. For instance, Wind River VxWorks could be specified
using x-windriver-vxworks.

It is recommended that a vendor register their operating system in the
official named list, only using this extension format until it is
official.





TYPE_ID is specific to each OS_TYPE, but is not currently
formalized. The purpose of this is to further clarify details on the
OS_TYPE if desired. For instance, to specify Ubuntu Linux, use:
“linux,ubuntu”.

As TYPE_ID is not yet formalized, it is open for different usages by
different parties. It is recommended that groups work together to define
common values where appropriate.

TYPE_ID_VERSION is optional parameter which may appear after a
TYPE_ID value. Its purpose is to specify the version of the
operating system identified by TYPE_ID. Extending the prior example
of “linux,ubuntu”, version 18.04 of that operating system may be
specified using “linux,ubuntu,18.04”.

As with TYPE_ID, this may be open to namespace collisions, and it is
again recommended that groups work together to define common values
where appropriate.

Here are some example os,type values:

os,type = "linux"

os,type = "linux,ubuntu,18.04"

os,type = "linux,ubuntu,18.04.01"

os,type = "linux,yocto"

os,type = "linux,yocto,gatesgarth"

os,type = "baremetal"

os,type = "baremetal,fsbl"

os,type = "baremetal,newlib,3.3.0"







3.2.6. Implicit Flags Properties

It is possible to specify default flags values at the domain level using
the following properties:


	#access-implicit-default-cells


	access-implicit-default


	#memory-implicit-default-cells


	memory-implicit-default


	#sram-implicit-default-cells


	sram-implicit-default




Each property specifies the default value for the access, memory and
sram flags for the execution domain (the node in which the implicit
flags properties appear).

The number of cells to use in each case is provided by the
#access-implicit-default-cells, #memory-implicit-default-cells, and
#sram-implicit-default-cells properties.

Here is an example:

#access-implicit-default-cells = <1>;
access-implicit-default = <0xff00ff>;
#access-flags-cells = <0x0>;
access = <&mmc0>;








3.3. Default Execution Domain

There is a concept of a default execution domain in system devicetree.
This corresponds to an execution domain running on the default CPU
cluster, /cpus (see Section 2.4). This default
domain is compatible with the current base specification.

Here are some use cases for this domain:


	As a way to specify the default place to assign added hardware (see
usage environment #1 in Section 1.4)

The default domain does not have to list the all the hardware
resources allocated to it. It gets everything not explicitly
allocated to other domains.

This minimizes the amount of information needed in /domains.

This can also be useful for managing dynamic hardware, such as add-on
boards and FPGA images that add new devices.



	The default domain can be used to specify what a master environment
sees (see usage environment #2)

For example, the default domain can be the entity configuring a
master environment like Linux or Xen, while the other domains are to
be managed by the master.





In a system device tree without a default CPU cluster, the memory
assignment for each domain is specified using the memory property in
each “openamp,domain-v1” node. In a devicetree with a default domain and
software running on it that is not aware of the system devicetree’s
semantics, it may be convenient to “hide” the memory assignments for
non-default execution domains from that software.

This is possible using /reserved-memory. Here is an example:

reserved-memory {
        #address-cells = <0x2>;
        #size-cells = <0x2>;
        ranges;

        memory_r5@0 {
                compatible = "openamp,domain-memory-v1";
                reg = <0x0 0x0 0x0 0x8000000>;
        };
};





The purpose of memory_r5@0 is to let the default execution domain
know that it shouldn’t use the 0x0-0x8000000 memory range, because it is
reserved for use by other domains.



3.4. Per-Domain Reserved Memory and Chosen Nodes

/reserved-memory and /chosen are top-level nodes defined in the
base specification which are dedicated to configuration of the default
execution domain, rather than hardware description of that domain.

Each execution domain in a system devicetree might need similar
configuration. To enable this, domain nodes may have chosen and
reserved-memory child nodes with the same semantics, but which apply
to this domain. The top-level /reserved-memory and /chosen nodes
remain in place for the default execution domain.

Here is an example:

/ {
        /* chosen settings for /cpus */
        chosen {
        };

        /* reserved memory for /cpus */
        reserved-memory {
        };

        domains {
                openamp_r5 {
                        compatible = "openamp,domain-v1";

                        /* chosen for "openamp_r5" */
                        chosen {
                        };

                        /* reserved memory for "openamp_r5" */
                        reserved-memory {
                        };
                };
        };
};









            

          

      


      

    

  

  
    
    

    4. Bus Firewalls (Under Discussion)
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
4. Bus Firewalls (Under Discussion)


Note

The contents of this chapter are still under discussion.




4.1. Hardware Description


4.1.1. Bus Firewall Controllers

Bus Firewalls Controllers are hardware blocks like Xilinx XMPU and XPPU
that allow for the configuration of system-wide DMA transactions
blacklists and whitelists.

The controllers are described using regular device tree nodes such as:

amba_xppu: xppu-bus {
        compatible = "indirect-bus";
        #address-cells = <0x2>;
        #size-cells = <0x2>;

        lpd_xppu: xppu@ff990000 {
                compatible = "xlnx,xppu"
                #firewall-cells = <0x0>;
                reg = <0x0 0xff990000 0x0 0x1000>;
        };

        pmc_xppu: xppu@f1310000 {
                compatible = "xlnx,xppu"
                #firewall-cells = <0x0>;
                reg = <0x0 0xf1310000 0x0 0x1000>;
        };
};





Where the compatible string “xlnx,xppu” indicates the type of firewall
controller, reg is the MMIO address of the controller, and #firewall-cells
indicates the presence of firewall-specific extra information (none in
this example.)



4.1.2. Device Protection

Each device node protected by a firewall links to the relevant firewall
controller, for instance can0 is protected by lpd_xppu:

axi {
        can0: can@ff060000 {
                firewall-0 = <&lpd_xppu>;
        };
};





Bus mastering devices are identified by bus firewalls using IDs. Their
transactions are marked with a device ID. These IDs are used to
configure bus firewalls and are called “Bus Master IDs”. They are
advertised using a new property “bus-master-id”:

bus-master-id = <&controller u32>





Where &controller is the link to the bus firewall controller and u32 is
the Bus Master ID of the device:

dev0: device@0 {
        bus-master-id = <&lpd_xppu 0x212>;
};







4.1.3. Full Example

amba_xppu: xppu-bus {
        compatible = "indirect-bus";
        #address-cells = <0x2>;
        #size-cells = <0x2>;

        lpd_xppu: xppu@ff990000 {
                compatible = "xlnx,xppu"
                #firewall-cells = <0x0>;
                reg = <0x0 0xff990000 0x0 0x1000>;
        };

        pmc_xppu: xppu@f1310000 {
                compatible = "xlnx,xppu"
                #firewall-cells = <0x0>;
                reg = <0x0 0xf1310000 0x0 0x1000>;
        };
};

cpus_r5: cpus-cluster-r5 {
        #address-cells = <0x1>;
        #size-cells = <0x0>;
        #cpus-mask-cells = <0x1>;
        compatible = "cpus,cluster";

        bus-master-id = <&lpd_xppu 0x0 &pmc_xppu 0x0 &lpd_xppu 0x1 &pmc_xppu 0x1>;
};

axi-bus {
        compatible = "simple-bus";
        #address-cells = <2>;
        #size-cells = <2>;

        ethernet0: ethernet@ff0c0000 {
                bus-master-id = <&lpd_xppu 0x234 &pmc_xppu 0x234>;
                firewall-0 = <&lpd_xppu>;
        };

        can0: can@ff060000 {
                firewall-0 = <&lpd_xppu>;
        };

        mmc0: sdhci@f1050000 {
                bus-master-id = <&lpd_xppu 0x243 &pmc_xppu 0x243>;
                firewall-0 = <&pmc_xppu>;
        };

        serial0: serial@ff000000 {
                firewall-0 = <&lpd_xppu>;
        };
};








4.2. Configuration

Bus firewalls configuration is based on Execution Domains. They are the
natural place to describe the desired firewalls configurations because
they already specify device assignments. We only need to add protection
to the assignments. To do that, we add two new properties “firewallconf”
and “firewallconf-default”.


4.2.1. firewallconf

firewallconf is a new property that can be used in a domain node. It
applies to all address ranges in the domain it appears in.

firewallconf = <&domain0 block 0>;





The first cell is a link to a node of a bus mastering device (or a
domain). Lopper retrieves the bus-master-ids of the linked node for the
relevant controllers. If the linked node is a domain, lopper retrieves
the bus-master-id of every device in the domain access list and the
bus-master-id of the CPU cluster of the domain.

The second cell is the action, values can be allow (1), block (0), and
block-desirable (2):


	block [0]: access is blocked


	allow [1]: access is allowed


	block-desirable [2]: “block if you can”




The third cell is a priority number: the priority of the rule when
block-desirable is specified, otherwise unused.

block-desirable is useful because in many cases bus firewall controllers
only support few configuration entries, thus not everything can be
protected. With block-desirable we can let lopper compute the best
configuration to protect as much as possible according to the priorities
we set.



4.2.2. firewallconf-default

firewallconf-default applies to all bus-master-ids except for the ones
listed in the firewallconf property:

firewallconf-default = <block-desirable 8>,
firewallconf = <&domain0 allow 0>,
               <&domain1 allow 0>;





In this example, we want to block all bus-master-ids except for the ones
of domain-0 and domain-1.



4.2.3. Full Example

Two domains are block access from everybody else to their resources with
the exception of two devices, ethernet and serial0, which are shared
between the two domains so both domains get access to them.

domains {
        domain0: domain-0 {
                compatible = "openamp,domain-v1";
                id = <0x0>;
                memory = <0x100000 0x100000>;
                access = <&mmc0 &ethernet &serial0>;
                firewallconf-default = <block-desirable 8>;
        };

        domain1: domain-1 {
                compatible = "openamp,domain-v1";
                id = <0x1>;
                memory = <0x0 0x100000>;
                access = <&can0 &ethernet &serial0>;
                firewallconf-default = <block-desirable 8>;
        };
};










            

          

      


      

    

  

  
    
    

    5. OpenAMP RemoteProc (Under Discussion)
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
5. OpenAMP RemoteProc (Under Discussion)


Note

The contents of this chapter are still under discussion.



[OpenAMP] RemoteProc is a framework for remote processor communication and
lifecycle management between Linux and other OSes.

[Lopper] can generate OpenAMP RemoteProc nodes for Linux and other Operating
Systems starting from the System Device Tree representation of the same
information.

Lopper comes with plugins and one of them is to generate the Xilinx
RemoteProc device tree nodes. Other silicon vendors can introduce
similar plugins to generate their RemoteProc device tree nodes.


5.1. System Device Tree

At the System Device Tree level, no special nodes or properties are
needed to represent RemoteProc information. Typically, the main cluster
and the remote cluster are separate domains. Any shared resources are
repeated under all domains that can access them.

Special vendor-specific properties can be represented using the access
list flag fields, as usual with system device tree.


5.1.1. System Device Tree Example

This is a System Device Tree example that can be used as input for
lopper to generate RemoteProc nodes for Linux.

Example in YAML:

definitions:
    OpenAMP:

        openamp-channel-0-access-srams: &openamp-channel0-access-srams # used for access in each domain
            - dev: psu_r5_0_atcm_global
            - dev: psu_r5_0_btcm_global

        openamp-channel-1-access-srams: &openamp-channel1-access-srams # used for access in each domain
            - dev: psu_r5_1_atcm_global
            - dev: psu_r5_1_btcm_global


        rpu1vdev0vring0: &rpu1vdev0vring0
            compatible: xilinx,openamp-ipc-1.0
            no-map: 1
            reg:
                - start: 0x3ef40000
                  size: 0x4000

        rpu1vdev0vring1: &rpu1vdev0vring1
            compatible: xilinx,openamp-ipc-1.0
            no-map: 1
            reg:
                - start: 0x3ef44000
                  size: 0x4000

        rpu1vdev0buffer: &rpu1vdev0buffer
            compatible: xilinx,openamp-ipc-1.0
            no-map: 1
            reg:
                - start: 0x3ef48000
                  size: 0x100000

        rproc_reserved1: &rproc_reserved1
            compatible: xilinx,openamp-ipc-1.0
            no-map: 1
            reg:
                - start: 0x3ef00000
                  size: 0x40000

        rproc_reserved0: &rproc_reserved0
            compatible: xilinx,openamp-ipc-1.0
            no-map: 1
            reg:
                - start: 0x3ed00000
                  size: 0x40000

        rpu0vdev0vring: &rpu0vdev0vring0
            compatible: xilinx,openamp-ipc-1.0
            no-map: 1
            reg:
                - start: 0x3ed40000
                  size: 0x4000

        rpu0vdev0vring1: &rpu0vdev0vring1
            compatible: xilinx,openamp-ipc-1.0
            no-map: 1
            reg:
                - start: 0x3ed44000
                  size: 0x4000

        rpu0vdev0buffer: &rpu0vdev0buffer
            compatible: xilinx,openamp-ipc-1.0
            no-map: 1
            reg:
                - start: 0x3ed48000
                  size: 0x100000


domains:
    openamp_a72_0_cluster: # host in channel from a72-0 to r5-1 over channel 0
        compatible: openamp,domain-v1
        cpus:
            - cluster: cpus_a72
              cpumask: 0x1
              mode:
                 secure: false
                 el: 0x1
        access:
            # if we want to have a list merge, it should be in a list
            - dev: ipi0  # used for Open AMP RPMsg IPC
            - dev: ipi1  # same as ipi0
            - <<+: [ *openamp-channel0-access-srams, *openamp-channel1-access-srams ]

        reserved-memory:
            ranges: true
            # if we want an object / node merge, it should be like this (a map)
            label-references: { rpu0vdev0vring0, rpu0vdev0vring0, rpu0vdev0buffer, rproc_reserved0 }
            label-references: { rpu1vdev0vring0, rpu1vdev0vring1, rpu1vdev0buffer, rproc_reserved1 }

        domain-to-domain:
            compatible: openamp,domain-to-domain-v1

            remoteproc0:
                compatible: openamp,remoteproc-v1
                remote: openamp_r5_0_cluster
                elfload:
                     - rproc_reserved0
                     - openamp-channel-0-access-srams

            remoteproc1:
                compatible: openamp,remoteproc-v1
                remote: openamp_r5_1_cluster
                elfload:
                     - rproc_reserved1
                     - openamp-channel-1-access-srams

            rpmsg0:
                compatible: openamp,rpmsg-v1
                openamp-xlnx-native: true # use native OpenAMP implementation
                remote:  openamp_r5_0_cluster
                mbox: ipi0
                carveouts:
                   - rpu0vdev0buffer
                   - rpu0vdev0vring0
                   - rpu0vdev0vring1


            rpmsg1:
                compatible: openamp,rpmsg-v1
                openamp-xlnx-native: true # use native OpenAMP implementation
                remote:  openamp_r5_1_cluster
                mbox: ipi1
                carveouts:
                   - rpu1vdev0buffer
                   - rpu1vdev0vring0
                   - rpu1vdev0vring1

    openamp_r5_0_cluster:
        compatible: openamp,domain-v1
        cpus:
            - cluster: cpus_r5
              cpumask: 0x1
              mode:
              secure: true
        access:
            - dev: ipi2
            - <<+: *openamp-channel0-access-srams # TCM banks used for firmware memory
        reserved-memory:
            ranges: true
             label-references: { rpu0vdev0vring0, rpu0vdev0vring0, rpu0vdev0buffer, rproc_reserved0 }
        domain-to-domain:
             compatible: openamp,domain-to-domain-v1
             rpmsg0:
                 compatible: openamp,rpmsg-v1
                 host: openamp_a72_0_cluster
                 mbox: ipi2
                 carveouts:
                    - rpu0vdev0buffer
                    - rpu0vdev0vring0
                    - rpu0vdev0vring1

    openamp_r5_1_cluster:
        compatible: openamp,domain-v1
        cpus:
            - cluster: cpus_r5
              cpumask: 0x2
              mode:
              secure: true
        access:
            - dev: ipi3
            - <<+: *openamp-channel1-access-srams # TCM banks used for firmware memory
        reserved-memory:
            ranges: true
            label-references: { rpu1vdev0vring0, rpu1vdev0vring1, rpu1vdev0buffer, rproc_reserved1 }
        domain-to-domain:
             compatible: openamp,domain-to-domain-v1
             relation0:
                 compatible: openamp,rpmsg-v1
                 host: openamp_a72_0_cluster
                 mbox: ipi3
                 carveouts:
                    - rpu1vdev0buffer
                    - rpu1vdev0vring0
                    - rpu1vdev0vring1







5.1.2. Device Tree Conversion and Example

The corresponding Device Tree for Linux generated by lopper is the
following. (It is compliant to the latest RemoteProc Xilinx bindings
upstream.)


	the reserved-memory regions are copied from the reserved-memory subnode of a domain.


	
	r5ss@f9a00000:
	
	xlnx,cluster-mode comes from the cpus property of the RPU domain


	memory-region and sram properties come from the shared regions


	mboxes and mbox-names come from the access property and the 0x13 flag












reserved-memory {
        #address-cells = <1>;
        #size-cells = <1>;
        ranges;

        rpu0vdev0vring0: rpu0vdev0vring0@3ed40000 {
                compatible = "xilinx,openamp-ipc-1.0";
                no-map;
                reg = <0x3ed40000 0x4000>;
        };
        rpu0vdev0vring1: rpu0vdev0vring1@3ed44000 {
                compatible = "xilinx,openamp-ipc-1.0";
                no-map;
                reg = <0x3ed44000 0x4000>;
        };
        rpu0vdev0buffer: rpu0vdev0buffer@3ed48000 {
                compatible = "xilinx,openamp-ipc-1.0";
                no-map;
                reg = <0x3ed48000 0x100000>;
        };
        rproc_0_reserved: rproc@3ed000000 {
                compatible = "xilinx,openamp-ipc-1.0";
                no-map;
                reg = <0x3ed00000 0x40000>;
        };

        rpu1vdev0vring0: rpu1vdev0vring0@3ef40000 {
                compatible = "xilinx,openamp-ipc-1.0";
                no-map;
                reg = <0x3ef40000 0x4000>;
        };
        rpu1vdev0vring1: rpu1vdev0vring1@3ef44000 {
                compatible = "xilinx,openamp-ipc-1.0";
                no-map;
                reg = <0x3ef44000 0x4000>;
        };
        rpu1vdev0buffer: rpu1vdev0buffer@3ef48000 {
                compatible = "xilinx,openamp-ipc-1.0";
                no-map;
                reg = <0x3ef48000 0x100000>;
        };
        rproc_1_reserved: rproc@3ef000000 {
                compatible = "xilinx,openamp-ipc-1.0";
                no-map;
                reg = <0x3ef00000 0x40000>;
        };
};

r5ss@f9a00000 {
        compatible = "xlnx,zynqmp-r5-remoteproc";
        #address-cells = <2>;
        #size-cells = <2>;
        ranges;
        reg = <0x0 0xff9a0000 0x0 0x10000>;
        xlnx,cluster-mode = <0>;

        r5f_0 {
                compatible = "xilinx,r5f";
                memory-region = <&rproc_0_reserved0>,
                                <&rpu0vdev0vring0>,
                                <&rpu0vdev0vring1>,
                                <&rpu0vdev0buffer>;
                sram = <&psu_r5_0_atcm_global>, <&psu_r5_0_btcm_global>;
                mboxes = <&ipi_mailbox_rpu0 0x0 &ipi_mailbox_rpu0 0x1>;
                mbox-names = "tx", "rx";
                power-domain = <0x7>;
        };

        r5f_1 {
                compatible = "xilinx,r5f";
                memory-region = <&rproc_1_reserved1>,
                                <&rpu1vdev0vring0>,
                                <&rpu1vdev0vring1>,
                                <&rpu1vdev0buffer>;
                sram = <&psu_r5_1_atcm_global>, <&psu_r5_1_btcm_global>;
                mboxes = <&ipi_mailbox_rpu1 0x0 &ipi_mailbox_rpu1 0x1>;
                mbox-names = "tx", "rx";
                power-domain = <0x8>;
        };
};
psu_r5_0_atcm_global: psu_tcm_global@ffe00000 {
        compatible = "xlnx,psu-tcm-global";
        status = "okay";
        reg = <0x0 0xffe00000 0x0 0x10000>;
};
psu_r5_0_btcm_global: psu_tcm_global@ffe20000 {
        compatible = "xlnx,psu-tcm-global";
        status = "okay";
        reg = <0x0 0xffe20000 0x0 0x10000>;
};

psu_r5_1_atcm_global: psu_tcm_global@ffe90000 {
        compatible = "xlnx,psu-tcm-global";
        status = "okay";
        reg = <0x0 0xffe90000 0x0 0x10000>;
};
psu_r5_1_btcm_global: psu_tcm_global@ffeb0000 {
        compatible = "xlnx,psu-tcm-global";
        status = "okay";
        reg = <0x0 0xffeb0000 0x0 0x10000>;
};

zynqmp_ipi@0 {
        compatible = "xlnx,zynqmp-ipi-mailbox";
        interrupt-parent = <&gic>;
        interrupts = <0 29 4>;
        xlnx,ipi-id = <7>;
        #address-cells = <1>;
        #size-cells = <1>;
        ranges;

         /* APU<->RPU0 IPI mailbox controller */
         ipi_mailbox_rpu0: mailbox@ff90000 {
                reg = <0xff990600 0x20>,
                      <0xff990620 0x20>,
                      <0xff9900c0 0x20>,
                      <0xff9900e0 0x20>;
                reg-names = "local_request_region",
                            "local_response_region",
                            "remote_request_region",
                            "remote_response_region";
                #mbox-cells = <1>;
                xlnx,ipi-id = <1>;
         };

         /* APU<->RPU1 IPI mailbox controller */
         ipi_mailbox_rpu1: mailbox@ff90000 {
                reg = <0xff990800 0x20>,
                      <0xff990820 0x20>,
                      <0xff990ec0 0x20>,
                      <0xff990ee0 0x20>;
                reg-names = "local_request_region",
                            "local_response_region",
                            "remote_request_region",
                            "remote_response_region";
                #mbox-cells = <1>;
                xlnx,ipi-id = <2>;
         };

};










            

          

      


      

    

  

  
    
    

    6. Simplified YAML (Under Discussion)
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
6. Simplified YAML (Under Discussion)


Note

The contents of this chapter are still under discussion.



This document describes a YAML-based source representation for
DeviceTree which is an alternative to DeviceTree Source (DTS). It is
functionally equivalent to DTS and it comes with several simplifications
to make the source easier to read and to write.


6.1. Basics


6.1.1. Nodes, Properties, and Hierarchy

DeviceTree nodes are represented as YAML mappings. The content of the
mapping corresponds to the content of the DeviceTree node. The key of
the YAML mapping is the DeviceTree node label, or, if the label is not
present, the DeviceTree node name (the @address portion can be skipped).

When converting from YAML to DeviceTree Source, the node names are
generated from the YAML keys and compatible strings.

DeviceTree properties are expressed in YAML as unordered key: value
pairs. The difference between a node and a property in YAML is that a
node is a key: value pair with one or more key: value pairs as value.
A property is a single key: value pair, the value can be a scalar or a
sequence.

The DeviceTree hierarchy is preserved in YAML by using the appropriate
indentation.



6.1.2. Example

YAML:

axi:
  compatible: simple-bus;

  can0:
    compatible: xlnx,zynq-can-1.0
    reg:
      - start: 0xff060000
        size: 0x1000





Device Tree:

axi {
        compatible = "simple-bus";

        can0: can@ff060000 {
                compatible = "xlnx,zynq-can-1.0";
                reg = <0x0 0xff060000 0x0 0x1000>;
        };
};








6.2. Simplifications

The Simplified YAML format comes with simplifications to make the source
easier to read and more intuitive to write. The simplifications are
described here with the description of how they can be translated back
to DeviceTree Source.


6.2.1. Strings

Simplified YAML doesn’t use quoted strings.

Example:

compatible: openamp,domain-v1







6.2.2. reg and other address ranges

List of address ranges, such as reg, are expressed as a YAML sequence
of key: value pairs, with start and size as keys. The start and
size scalars are as large as needed: they are not broken down into
32-bit cells.

Furthermore, addresses and sizes can also be expressed in human-readable
formats, e.g. 2M, 4G, 1T.

Example:

reg:
  - start: 0xff060000
    size: 0x1000
  - start: 0x400000000
    size: 0x10000
  - start: 32G
    size: 1G







6.2.3. #address_cells and #size_cells

#address_cells and #size_cells are not used in simplified YAML. When
converting Simplified YAML to DeviceTree Source, #address_cells and
#size_cells are generated as appropriate.



6.2.4. #interrupt_cells and others

#interrupt_cells and other *_cells definitions are not used in
Simplified YAML. Instead, the value of the related property is expressed
as a sequence with a corresponding number of entries. If multiple sets
need to be described, a sequence of sequences is used.

Example:

interrupts:
  - [0x1, 0xd, 0xf08]
  - [0x1, 0xe, 0xf08]
  - [0x1, 0xb, 0xf08]
  - [0x1, 0xa, 0xf08]







6.2.5. Phandles

Phandles are not used in Simplified YAML. Instead, only references are
used. The & is not used in Simplified YAML for references.

Example:

interrupt-parent: interrupt-controller







6.2.6. Boolean Properties

Boolean properties use true/false as value instead of 0x1/0x0.

Example:

enabled: true








6.3. Full Example

compatible: xlnx,zynqmp-zcu102-rev1.0, xlnx,zynqmp-zcu102, xlnx,zynqmp
model: ZynqMP ZCU102 Rev1.0

cpus:
  cpu@0:
    compatible: arm,cortex-a53
    device_type: cpu
    enable-method: psci
    operating-points-v2: 0x1
    reg: 0x0
    cpu-idle-states: 0x2
    clocks: 0x3 0xa

  cpu@1:
    compatible: arm,cortex-a53
    device_type: cpu
    enable-method: psci
    reg: 0x1
    operating-points-v2: 0x1
    cpu-idle-states: 0x2

  cpu@2:
    compatible: arm,cortex-a53
    device_type: cpu
    enable-method: psci
    reg: 0x2
    operating-points-v2: 0x1
    cpu-idle-states: 0x2

  cpu@3:
    compatible: arm,cortex-a53
    device_type: cpu
    enable-method: psci
    reg: 0x3
    operating-points-v2: 0x1
    cpu-idle-states: 0x2

timer:
  compatible: arm,armv8-timer
  interrupt-parent: interrupt-controller
  interrupts:
    - [0x1, 0xd, 0xf08]
    - [0x1, 0xe, 0xf08]
    - [0x1, 0xb, 0xf08]
    - [0x1, 0xa, 0xf08]

axi:
  compatible: simple-bus
  ranges: true

  interrupt-controller:
    compatible: arm,gic-400
    reg:
      - start: 0xf9010000
        size: 0x10000
      - start: 0xf9020000
        size: 0x20000
      - start: 0xf9040000
        size: 0x20000
      - start: 0xf9060000
        size: 0x20000
    interrupt-parent: interrupt-controller
    interrupts: [0x1, 0x9, 0xf04]
    num_cpus: 0x2
    num_interrupts: 0x60

  can0:
    compatible: xlnx,zynq-can-1.0
    status: okay
    clock-names: can_clk, pclk
    reg:
      - start: 0xff060000
        size: 0x1000
    interrupts: [0x0, 0x17, 0x4]
    interrupt-parent: interrupt-controller
    tx-fifo-depth: 0x40
    rx-fifo-depth: 0x40

  ethernet0:
    compatible: cdns,zynqmp-gem, cdns,gem
    status: okay
    interrupt-parent: interrupt-controller
    interrupts:
      - [0x0 0x3f 0x4]
      - [0x0 0x3f 0x4]
    reg:
      - start: 0xff0e0000
        size: 0x1000
    phy-handle: 0x29
    pinctrl-names: default
    pinctrl-0: 0x2a
    phy-mode: rgmii-id
    xlnx,ptp-enet-clock: 0x0
    local-mac-address: [00, 0a, 35, 00, 22, 01]

    ethernet-phy:
      reg: 0xc
      ti,rx-internal-delay: 0x8
      ti,tx-internal-delay: 0xa
      ti,fifo-depth: 0x1
      ti,dp83867-rxctrl-strap-quirk







6.4. Anchors, aliases and Merge Key Language-Independent Type

Simplified YAML can not only use standard YAML anchors and aliases, it
can also leverage extended processing when sentinel key values are
detected.

While these sentinels are valid YAML keys and will pass standard
parsing, to expand these keys, tooling such as Lopper must be used to
process the YAML post parsing.

These special key values are an extension to YAML merge keys: <<+ and <<*


	<<+: Indicates that multiple alias mappings should be merged, with
	standard processing of duplicate keys. A list should be used
to specify multiple aliases, if a single alias is specified
(in a list or not) then this is equivalent to <<



	<<*: Future: Indicates that node expansion/inheritance should be
	performed. This allows the multiple inheritance of YAML
nodes (in the current implementation it is functionally
equivalent to <<+)





Whether or not the sentinel value is used in a map, or in a list
changes the way they are expanded.


	map: the alias or aliases (if in a value list) should be expanded
	and numbered nodes created to keep duplicate keys separate



	list: the alias or aliases (if in a value list) should be expanded
	and duplicate values encoded in a json string for future
processing.





Example:

definitions:
    OpenAMP:
         rproc_reserved0: &rproc_reserved0
             - ranges: 1
               start: 0x3ed00000
               size: 0x40000
               no-map: 1

    openamp-channel-0-access-srams: &openamp_channel0_access_srams
        - dev: psu_r5_0_atcm_global
        - dev: psu_r5_0_btcm_global

    openamp-channel-1-access-srams: &openamp_channel1_access_srams
        - dev: psu_r5_1_atcm_global

domains:
    openamp_a72_0_cluster:
        compatible:
            - "openamp,domain-v1"
        cpus:
            - cluster: cpus-a72@0
              cpumask: 0x1
              mode:
                 secure: true
                 el: 0x3

        reserved-memory:
            ranges: true
            <<+: *rproc_reserved0

        reserved-memory-2:
            ranges: true
            <<+: [ *rproc_reserved0 ]

        reserved-memory-3:
            ranges: true
            <<+: [ *rproc_reserved0, *openamp_channel0_access_srams, *openamp_channel1_access_srams ]

        reserved-memory-4:
            <<*: *rproc_reserved0

        channels:
            - dev: bar0
            - <<+: [ *openamp_channel0_access_srams, *openamp_channel1_access_srams ]





Represents the followig dts:

/dts-v1/;

/ {

        definitions {
                openamp-channel-0-access-srams = "[{\"dev\": \"psu_r5_0_atcm_global\"}, {\"dev\": \"psu_r5_0_btcm_global\"}]";
                openamp-channel-1-access-srams = "[{\"dev\": \"psu_r5_1_atcm_global\"}]";

                OpenAMP {
                        rproc_reserved0 = "[{\"ranges\": 1, \"start\": 1053818880, \"size\": 262144, \"no-map\": 1}]";
                };
        };

        domains {

                openamp_a72_0_cluster {
                        compatible = "openamp,domain-v1";
                        cpus = "[{\"cluster\": \"cpus-a72@0\", \"cpumask\": 1, \"mode\": {\"secure\": true, \"el\": 3}}]";
                        channels = "[{\"dev\": \"bar0\"}, {\"dev\": \"psu_r5_0_atcm_global\"}, {\"dev\": \"psu_r5_0_btcm_global\"}, {\"dev\": \"psu_r5_1_atcm_global\"}]";

                        reserved-memory {
                                ranges = <0x1>;
                                start = <0x3ed00000>;
                                size = <0x40000>;
                                no-map = <0x1>;
                        };

                        reserved-memory-2 {
                                ranges = <0x1>;

                                rproc_reserved0 {
                                        ranges = <0x1>;
                                        start = <0x3ed00000>;
                                        size = <0x40000>;
                                        no-map = <0x1>;
                                };
                        };

                        reserved-memory-3 {
                                ranges = <0x1>;

                                rproc_reserved0 {
                                        ranges = <0x1>;
                                        start = <0x3ed00000>;
                                        size = <0x40000>;
                                        no-map = <0x1>;
                                };

                                openamp-channel-0-access-srams {
                                        dev = "psu_r5_0_atcm_global";
                                };

                                openamp-channel-1-access-srams {
                                        dev = "psu_r5_1_atcm_global";
                                };
                        };

                        reserved-memory-4 {
                                ranges = <0x1>;
                                start = <0x3ed00000>;
                                size = <0x40000>;
                                no-map = <0x1>;
                        };
                };
        };
};









            

          

      


      

    

  

  
    
    

    7. Domain Specific YAML Simplifications (Under Discussion)
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
7. Domain Specific YAML Simplifications (Under Discussion)


Note

The contents of this chapter are still under discussion.



For simplicity and ease of use, System Device Tree comes with an
alternative representation in YAML, see Simplified YAML (Under Discussion).

This document introduces further simplifications for the YAML
representation of System Device Tree domains (/domains).


7.1. Hierarchy

Domains are under /domains.

All domains, even nested domains, are specified under a “domain” key.



7.2. Access

The access property of domain nodes is specified with the following key:
value pairs:


	dev: device reference


	flags: flags




Example:

access:
    - dev: serial0
      flags: {read-only: true}







7.3. Memory and Sram

The memory and sram properties to specify the memory and sram
allocations to a domain are specified in YAML using start and size key:
value pairs to increase readability.

Example:

sram:
    - start: 0xfffc0000
      size: 0x1000
      flags: {read-only: true}







7.4. Cpus

The cpus property of domain nodes is specified with the following key:
value pairs:


	cluster: cpu cluster reference


	cpumask: cpumask in hex


	
	mode: unordered key: value pairs specifying the cpu mode
	
	secure: true/false


	el: the execution level












Example:

cpus:
    - cluster: cpus_a72
      cpumask: 0x3
      mode:
          secure: true
          el: 0x3







7.5. Flags

In YAML the following simplifications are used for access, memory, and
sram flags definitions and usage:


	To define flags  use key: value pairs


	When defining flags values, give individual flags setting a name
rather than just a number, e.g. use read-only instead of (1<<2). The
name and corresponding numeric values should be specified in lopper.


	no *-flags-cells




access:
    - dev: can0
      flags: {requested: true, read-only: true}







7.6. Implicit Flags Example

The Implicit Flags Properties in the system devicetree specification
can also be defined in YAML. For example:

access-implicit-default:
  secure: true
  allow-secure: true
  requested: true
  coherent: false
  virtualized: true
  qos: 99







7.7. Bus Firewalls

In YAML the following simplifications are used to represent firewallconf
and firewallconf-default:


	no “block-desireable”, instead use the priority number directly as
value of the block key


	no “allow”, instead use “never” as value of the block key


	no “firewallconf-default” property, instead use firewallconf with a
single value and no domain references




Example:

firewallconf:
  - domain: bm1
    block: 10
  - domain: bm2
    block: never
  - block: 5







7.8. Full Example

domains:
    xen:
        compatible: openamp,domain-v1

        id: 0xffff
        cpus:
            - cluster: cpus_a72
              cpumask: 0x3
              mode:
                  secure: false
                  el: 0x2
        memory:
            - start: 0x500000
              size: 0x7fb00000

        access:
            - dev: serial0
              flags: { xen-flag-example1: true }
            - dev: mmc0
              flags: { xen-flag-example1: true }

        domains:
            linux1:
                compatible: openamp,domain-v1

                id: 0x0
                cpus:
                    - cluster: cpus_a72
                      cpumask: 0x3
                      mode:
                          secure: false
                          el: 0x1
                memory:
                    - size: 1G
                access:
                    - dev: mmc0
                sram:
                    - start: 0xfffc0000
                      size: 0x1000
                      flags: { read-only: true }
                firewallconf:
                    domain: bm1
                    block: 0x12

            bm1:
                compatible: openamp,domain-v1

                id: 0x1
                cpus:
                    - cluster: cpus_a72
                      cpumask: 0x3
                      mode:
                          secure: false
                          el: 0x1
                memory:
                    - size: 512M
                access:
                    - dev: ethernet0
                firewallconf:
                    domain: linux1
                    block: always

domains:
    freertos1:
        compatible: openamp,domain-v1

        id: 0x5
        cpus:
            - cluster: cpus_r5
              cpumask: 0x3
              mode: {secure: true, el: 1}
        memory:
            - size: 2M
        access:
            - dev: can0

    bm2:
        compatible: openamp,domain-v1

        id: 0x6
        cpus:
            - cluster: microblaze0
              cpumask: 0x1
              mode: {}
        memory:
            - size: 1M
        access:
            - dev: serial1
        sram:
            - start: 0xfffc0000
              size: 0x1000
              flags: { read-only: true }









            

          

      


      

    

  

  
    
    

    System Devicetree Specification
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
System Devicetree Specification



	1. Introduction
	1.1. Purpose and Scope

	1.2. Relationship to the Devicetree Specification

	1.3. Summary of Extensions

	1.4. Usage Environments

	1.5. Definition of Terms





	2. Hardware Description
	2.1. CPU Cluster Binding
	2.1.1. CPU Cluster Properties

	2.1.2. CPU Node Properties

	2.1.3. address-map Property

	2.1.4. #ranges-address-cells Property

	2.1.5. #ranges-size-cells Property





	2.2. Example CPU Clusters
	2.2.1. Single-core Arm Cortex-M3

	2.2.2. Dual-core Arm Cortex-R5





	2.3. Indirect Bus Binding
	2.3.1. Indirect Bus Properties





	2.4. The Default Cluster, /cpus

	2.5. Example System Devicetree Hardware Descriptions
	2.5.1. Simple example

	2.5.2. More complex example









	3. Execution Domains
	3.1. Example

	3.2. Execution Domain Binding, v1
	3.2.1. cpus Property

	3.2.2. access Property

	3.2.3. memory Property

	3.2.4. sram Property

	3.2.5. os,type Property

	3.2.6. Implicit Flags Properties





	3.3. Default Execution Domain

	3.4. Per-Domain Reserved Memory and Chosen Nodes





	4. Bus Firewalls (Under Discussion)
	4.1. Hardware Description
	4.1.1. Bus Firewall Controllers

	4.1.2. Device Protection

	4.1.3. Full Example





	4.2. Configuration
	4.2.1. firewallconf

	4.2.2. firewallconf-default

	4.2.3. Full Example









	5. OpenAMP RemoteProc (Under Discussion)
	5.1. System Device Tree
	5.1.1. System Device Tree Example

	5.1.2. Device Tree Conversion and Example









	6. Simplified YAML (Under Discussion)
	6.1. Basics
	6.1.1. Nodes, Properties, and Hierarchy

	6.1.2. Example





	6.2. Simplifications
	6.2.1. Strings

	6.2.2. reg and other address ranges

	6.2.3. #address_cells and #size_cells

	6.2.4. #interrupt_cells and others

	6.2.5. Phandles

	6.2.6. Boolean Properties





	6.3. Full Example

	6.4. Anchors, aliases and Merge Key Language-Independent Type





	7. Domain Specific YAML Simplifications (Under Discussion)
	7.1. Hierarchy

	7.2. Access

	7.3. Memory and Sram

	7.4. Cpus

	7.5. Flags

	7.6. Implicit Flags Example

	7.7. Bus Firewalls

	7.8. Full Example





	8. Appendix: Example System Devicetree

	9. Bibliography








            

          

      


      

    

  

  
    
    

    9. Bibliography
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
9. Bibliography




[DTSpec]
Devicetree Specification [https://github.com/devicetree-org/devicetree-specification/releases/download/v0.3/devicetree-specification-v0.3.pdf],
Version 0.3, devicetree.org [https://devicetree.org], 13 February 2020.




[FreeRTOS]
FreeRTOS™ [https://www.freertos.org/]




[Lopper]
Lopper source code repository [https://github.com/devicetree-org/lopper].




[Linux]
The Linux kernel, see About Linux Kernel
<https://kernel.org/linux.html>




[OpenAMP]
The OpenAMP Project [https://www.openampproject.org/]




[RHEL]
Red Hat Enterprise Linux [https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux]




[TF-A]
Trusted Firmware-A [https://developer.arm.com/Tools%20and%20Software/Trusted%20Firmware-A]




[U-Boot]
Das U-Boot – the Universal Boot Loader [https://www.denx.de/wiki/U-Boot]




[Ubuntu]
Ubuntu Linux [https://ubuntu.com/]




[Xen]
Xen Project hypervisor [https://xenproject.org/developers/teams/xen-hypervisor/]




[Yocto]
Yocto Project [https://www.yoctoproject.org/]




[Zephyr]
Zephyr Project [https://www.zephyrproject.org]







            

          

      


      

    

  

  
    
    

    Software License Agreement (BSD 3-Clause License)
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
Software License Agreement (BSD 3-Clause License)

Copyright (c) 2014, Mentor Graphics Corporation. All rights reserved.
Copyright (c) 2015 - 2016 Xilinx, Inc. All rights reserved.
Copyright (c) 2016 Freescale Semiconductor, Inc. All rights reserved

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:


	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.


	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.


	Neither the name of 
  
    
    

    OpenAMP Maintainers
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
OpenAMP Maintainers

The OpenAMP project is maintained by the OpenAMP open source
community. Everyone is encouraged to submit issues and changes to
improve OpenAMP.

The intention of this file is to provide a set of names that developers
can consult when they have a question about OpenAMP and to provide a
set of names to be CC’d when submitting a patch.


Project Administration

Ed Mooring ed.mooring@gmail.com
Arnaud Pouliquen arnaud.pouliquen@st.com


All patches CC here

openamp-rp@lists.openampproject.org






            

          

      


      

    

  

  
    
    

    open-amp
    

    

    
 
  

    
  
    
     This is the documentation for the latest (main) development branch.
     If you are looking for the documentation of previous releases, use
     the drop-down menu on the left and select the desired version.
    

  
  
      
          
            
  
open-amp

This repository is the home for the Open Asymmetric Multi Processing (OpenAMP)
framework project. The OpenAMP framework provides software components that
enable development of software applications for Asymmetric Multiprocessing
(AMP) systems. The framework provides the following key capabilities.


	Provides Life Cycle Management, and Inter Processor Communication
capabilities for management of remote compute resources and their associated
software contexts.


	Provides a stand alone library usable with RTOS and Baremetal software
environments


	Compatibility with upstream Linux remoteproc and rpmsg components


	Following AMP configurations supported
a. Linux host/Generic(Baremetal) remote
b. Generic(Baremetal) host/Linux remote


	Proxy infrastructure and supplied demos showcase ability of proxy on host
to handle printf, scanf, open, close, read, write calls from Bare metal
based remote contexts.





OpenAMP Source Structure

|- lib/
|  |- virtio/     # virtio implementation
|  |- rpmsg/      # rpmsg implementation
|  |- remoteproc/ # remoteproc implementation
|  |- proxy/      # implement one processor access device on the
|  |              # other processor with file operations
|- apps/        # demonstration/testing applications
|  |- examples/ # Application samples using the OpenAMP framework.
|  |- machine/  # common files for machine can be shared by applications
|  |            # It is up to each app to decide whether to use these files.
|  |- system/   # common files for system can be shared by applications
|               # It is up to each app to decide whether to use these files.
|- cmake        # CMake files
|- script       # helper scripts (such as checkpatch) for contributors.





OpenAMP library libopen_amp is composed of the following directories in lib/:


	virtio/


	rpmsg/


	remoteproc/


	proxy/




OpenAMP system/machine support has been moved to libmetal, the system/machine
layer in the apps/ directory is for system application initialization, and
resource table definition.


libmetal APIs used in OpenAMP

Here are the libmetal APIs used by OpenAMP, if you want to port OpenAMP for your
system, you will need to implement the following libmetal APIs in the libmetal’s
lib/system/<SYS> directory:


	alloc, for memory allocation and memory free


	cache, for flushing cache and invalidating cache


	io, for memory mapping. OpenAMP required memory mapping in order to access
vrings and carved out memory.


	irq, for IRQ handler registration, IRQ disable/enable and global IRQ handling.


	mutex


	shmem (For RTOS, you can usually use the implementation from
lib/system/generic/)


	sleep, at the moment, OpenAMP only requires microseconds sleep as when OpenAMP
fails to get a buffer to send messages, it will call this function to sleep and
then try again.


	time, for timestamp


	init, for libmetal initialization.


	atomic




Please refer to lib/system/generic when you port libmetal for your system.

If you a different compiler to GNU gcc, please refer to lib/compiler/gcc/ to
port libmetal for your compiler. At the moment, OpenAMP needs the atomic
operations defined in lib/compiler/gcc/atomic.h.




OpenAMP Compilation

OpenAMP uses CMake for library and demonstration application compilation.
OpenAMP requires libmetal library. For now, you will need to download and
compile libmetal library separately before you compiling OpenAMP library.
In future, we will try to make libmetal as a submodule to OpenAMP to make this
flow easier.

Some Cmake options are available to allow user to customize to the OpenAMP
library for it project:


	WITH_PROXY (default OFF): Include proxy support in the library.


	WITH APPS (default OFF): Build with sample applications.


	WITH_PROXY_APPS (default OFF):Build with proxy sample applications.


	WITH_VIRTIO_DRIVER (default ON): Build with virtio driver enabled.
This option can be set to OFF if the only the remote mode is implemented.


	WITH_VIRTIO_DEVICE (default ON): Build with virtio device enabled.
This option can be set to OFF if the only the driver mode is implemented.


	WITH_STATIC_LIB (default ON): Build with a static library.


	WITH_SHARED_LIB (default ON): Build with a shared library.


	WITH_ZEPHYR (default OFF): Build open-amp as a zephyr library. This option
is mandatory in a Zephyr environment.


	WITH_DCACHE_VRINGS (default OFF): Build with data cache operations
enabled on vrings.


	WITH_DCACHE_BUFFERS (default OFF): Build with data cache operations
enabled on buffers.


	WITH_DCACHE_RSC_TABLE (default OFF): Build with data cache operations
enabled on resource table.


	WITH_DCACHE (default OFF): Build with all cache operations
enabled. When set to ON, cache operations for vrings, buffers and resource
table are enabled.


	RPMSG_BUFFER_SIZE (default 512): adjust the size of the RPMsg buffers.
The default value of the RPMsg size is compatible with the Linux Kernel hard
coded value. If you AMP configuration is Linux kernel host/ OpenAMP remote,
this option must not be used.





Example to compile OpenAMP for Zephyr

The Zephyr open-amp repo [https://github.com/zephyrproject-rtos/open-amp]
implements the open-amp library for the Zephyr project. It is mainly a fork of
this repository, with some add-ons for integration in the Zephyr project.
The standard way to compile OpenAMP for a Zephyr project is to use Zephyr build
environment. Please refer to
Zephyr OpenAMP samples [https://github.com/zephyrproject-rtos/zephyr/tree/main/samples/subsys/ipc]
for examples and Zephyr documentation [https://docs.zephyrproject.org/latest/] for the build
process.



Example to compile OpenAMP for communication between Linux processes:


	Install libsysfs devel and libhugetlbfs devel packages on your Linux host.


	build libmetal library on your host as follows:

    $ mkdir -p build-libmetal
    $ cd build-libmetal
    $ cmake <libmetal_source>
    $ make VERBOSE=1 DESTDIR=<libmetal_install> install







	build OpenAMP library on your host as follows:

  $ mkdir -p build-openamp
  $ cd build-openamp
  $ cmake <openamp_source> -DCMAKE_INCLUDE_PATH=<libmetal_built_include_dir> \
        -DCMAKE_LIBRARY_PATH=<libmetal_built_lib_dir> [-DWITH_APPS=ON]
  $ make VERBOSE=1 DESTDIR=$(pwd) install









The OpenAMP library will be generated to build/usr/local/lib directory,
headers will be generated to build/usr/local/include directory, and the
applications executable will be generated to build/usr/local/bin
directory.


	cmake option -DWITH_APPS=ON is to build the demonstration applications.


	If you have used -DWITH_APPS=ON to build the demos, you can try them on
your Linux host as follows:


	rpmsg echo demo:

# Start echo test server to wait for message to echo
$ sudo LD_LIBRARY_PATH=<openamp_built>/usr/local/lib:<libmetal_built>/usr/local/lib \
   build/usr/local/bin/rpmsg-echo-shared
# Run echo test to send message to echo test server
$ sudo LD_LIBRARY_PATH=<openamp_built>/usr/local/lib:<libmetal_built>/usr/local/lib \
   build/usr/local/bin/rpmsg-echo-ping-shared 1







	rpmsg echo demo with the nocopy API:

# Start echo test server to wait for message to echo
$ sudo LD_LIBRARY_PATH=<openamp_built>/usr/local/lib:<libmetal_built>/usr/local/lib \
   build/usr/local/bin/rpmsg-nocopy-echo-shared
# Run echo test to send message to echo test server
$ sudo LD_LIBRARY_PATH=<openamp_built>/usr/local/lib:<libmetal_built>/usr/local/lib \
   build/usr/local/bin/rpmsg-nocopy-ping-shared 1















Example to compile Zynq UltraScale+ MPSoC R5 generic(baremetal) remote:


	build libmetal library on your host as follows:


	Create your on cmake toolchain file to compile libmetal for your generic
(baremetal) platform. Here is the example of the toolchain file:

    set (CMAKE_SYSTEM_PROCESSOR "arm"              CACHE STRING "")
    set (MACHINE "zynqmp_r5" CACHE STRING "")

    set (CROSS_PREFIX           "armr5-none-eabi-" CACHE STRING "")
    set (CMAKE_C_FLAGS          "-mfloat-abi=soft -mcpu=cortex-r5 -Wall -Werror -Wextra \
       -flto -Os -I/ws/xsdk/r5_0_bsp/psu_cortexr5_0/include" CACHE STRING "")

    SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -flto")
    SET(CMAKE_AR  "gcc-ar" CACHE STRING "")
    SET(CMAKE_C_ARCHIVE_CREATE "<CMAKE_AR> qcs <TARGET> <LINK_FLAGS> <OBJECTS>")
    SET(CMAKE_C_ARCHIVE_FINISH   true)

    include (cross-generic-gcc)







	Compile libmetal library:

    $ mkdir -p build-libmetal
    $ cd build-libmetal
    $ cmake <libmetal_source> -DCMAKE_TOOLCHAIN_FILE=<toolchain_file>
    $ make VERBOSE=1 DESTDIR=<libmetal_install> install











	build OpenAMP library on your host as follows:


	Create your on cmake toolchain file to compile openamp for your generic
(baremetal) platform. Here is the example of the toolchain file:

    set (CMAKE_SYSTEM_PROCESSOR "arm" CACHE STRING "")
    set (MACHINE                "zynqmp_r5" CACHE STRING "")
    set (CROSS_PREFIX           "armr5-none-eabi-" CACHE STRING "")
    set (CMAKE_C_FLAGS          "-mfloat-abi=soft -mcpu=cortex-r5 -Os -flto \
      -I/ws/libmetal-r5-generic/usr/local/include \
      -I/ws/xsdk/r5_0_bsp/psu_cortexr5_0/include" CACHE STRING "")
    set (CMAKE_ASM_FLAGS        "-mfloat-abi=soft -mcpu=cortex-r5" CACHE STRING "")
    set (PLATFORM_LIB_DEPS      "-lxil -lc -lm" CACHE STRING "")
    SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -flto")
    SET(CMAKE_AR  "gcc-ar" CACHE STRING "")
    SET(CMAKE_C_ARCHIVE_CREATE "<CMAKE_AR> qcs <TARGET> <LINK_FLAGS> <OBJECTS>")
    SET(CMAKE_C_ARCHIVE_FINISH   true)
    set (CMAKE_FIND_ROOT_PATH /ws/libmetal-r5-generic/usr/local/lib \
        /ws/xsdk/r5_bsp/psu_cortexr5_0/lib )

    include (cross_generic_gcc)







	We use cmake find_path and find_library to check if libmetal includes
and libmetal library is in the includes and library search paths. However,
for non-linux system, it doesn’t work with CMAKE_INCLUDE_PATH and
CMAKE_LIBRARY_PATH variables, and thus, we need to specify those paths
in the toolchain file with CMAKE_C_FLAGS and CMAKE_FIND_ROOT_PATH.






	Compile the OpenAMP library:

$ mkdir -p build-openamp
$ cd build-openamp
$ cmake <openamp_source> -DCMAKE_TOOLCHAIN_FILE=<toolchain_file>
$ make VERBOSE=1 DESTDIR=$(pwd) install









The OpenAMP library will be generated to build/usr/local/lib directory,
headers will be generated to build/usr/local/include directory, and the
applications executable will be generated to build/usr/local/bin
directory.



Example to compile OpenAMP Linux Userspace for Zynq UltraScale+ MPSoC

We can use yocto to build the OpenAMP Linux userspace library and application.
open-amp and libmetal recipes are in this yocto layer:
https://github.com/OpenAMP/meta-openamp


	Add the meta-openamp layer to your layers in your yocto build project’s bblayers.conf file.


	Add libmetal and open-amp to your packages list. E.g. add libmetal and open-amp to the
IMAGE_INSTALL_append in the local.conf file.


	You can also add OpenAMP demos Linux applications packages to your yocto packages list. OpenAMP
demo examples recipes are also in meta-openamp:
https://github.com/OpenAMP/meta-openamp/tree/master/recipes-openamp/rpmsg-examples




In order to user OpenAMP(RPMsg) in Linux userspace, you will need to have put the IPI device,
vring memory and shared buffer memory to your Linux kernel device tree. The device tree example
can be found here:
https://github.com/OpenAMP/open-amp/blob/main/apps/machine/zynqmp/openamp-linux-userspace.dtsi




Version

The OpenAMP version follows the set of rule proposed in
Semantic Versioning specification [https://semver.org/].



Supported System and Machines

For now, it supports:


	Zynq generic remote


	Zynq UltraScale+ MPSoC R5 generic remote


	Linux host OpenAMP between Linux userspace processes


	Linux userspace OpenAMP RPMsg host


	Linux userspace OpenAMP RPMsg remote


	Linux userspace OpenAMP RPMsg and MicroBlaze bare metal remote






Known Limitations:


	In case of OpenAMP on Linux userspace for inter processors communication,
it only supports static vrings and shared buffers.


	sudo is required to run the OpenAMP demos between Linux processes, as
it doesn’t work on some systems if you are normal users.






How to contribute:

As an open-source project, we welcome and encourage the community to submit patches directly to the
project. As a contributor you  should be familiar with common developer tools such as Git and CMake,
and platforms such as GitHub.
Then following points should be rescpected to facilitate the review process.


Licencing

Code is contributed to the Linux kernel under a number of licenses, but all code must be compatible
with version the BSD License [https://github.com/OpenAMP/open-amp/blob/main/LICENSE.md], which is
the license covering the OpenAMP distribution as a whole. In practice, use the following tag
instead of the full license text in the individual files:

```
SPDX-License-Identifier: BSD-3-Clause
SPDX-License-Identifier: BSD-2-Clause
```







Signed-off-by

Commit message must contain Signed-off-by: line and your email must match the change authorship
information. Make sure your .gitconfig is set up correctly:

```
git config --global user.name "first-name Last-Namer"
git config --global user.email "yourmail@company.com"
```







gitlint

Before you submit a pull request to the project, verify your commit messages meet the requirements.
The check can be  performed locally using the the gitlint command.

Run gitlint locally in your tree and branch where your patches have been committed:

  ```gitlint```


Note, gitlint only checks HEAD (the most recent commit), so you should run it after each commit, or
use the –commits option to specify a commit range covering all the development patches to be
submitted.

Code style

In general, follow the Linux kernel coding style, with the following exceptions:

	Use /** */ for doxygen comments that need to appear in the documentation.

The Linux kernel GPL-licensed tool checkpatch is used to check coding style conformity.Checkpatch is
available in the scripts directory.

To check your <n> commits in your git branch:

./scripts/checkpatch.pl --strict -g HEAD-<n>

Send a pull request

We use standard github mechanism for pull request. Please refer to github documentation for help.

Communication and Collaboration

Subscribe [https://lists.openampproject.org/mailman3/lists/openamp-rp.lists.openampproject.org/] to
the OpenAMP mailing list(openamp-rp@lists.openampproject.org).

For more details on the framework please refer to the
OpenAMP Docs [https://openamp.readthedocs.io/en/latest/].

 OpenAMP lib build check docker action

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

OpenAMP lib build check docker action

This action test builds for a specified target.

Inputs

target

Required the build target. Default "linux".
The supported targets are:
linux
generic arm
zephyr

Example usage

uses: ./.github/actions/build_ci
with:
target: linux

 OpenAMP MicroBlaze example

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

OpenAMP MicroBlaze example

The microblaze_generic directories in OpenAMP repository provide an
implementation of rpmsg for Xilinx MicroBlaze design
example. The design instantiates Xilinx MicroBlaze soft processor in
ZynqMP’s programmable logic (PL) and uses the processing system (PS)
DDR memory for its text and data. The HP0_DDR_LOW is mapped from 0 to
0x7FFFFFFF. The Local Memory Bus (LMB) is not connected and the LMB
memory is not present. The MicroBlaze Vector Base Address is set to
0x70000000 and its reset_mode (01) will force it to enter sleep mode
without performing any bus access. The design is available in the Xilinx
Shell Archive (XSA) format at https://xilinx-wiki.atlassian.net

How to build OpenAMP echo server for the MicroBlaze design example.

For simplicity the example is not using Inter-Processor Interrupt (IPI)
hardware at this time and the MicroBlaze OpenAMP echo server is built
with RPMSG_NO_IPI flag.

	build the libmetal library on your host as follows:

	Create your own cmake toolchain file to compile libmetal for your generic
(baremetal) platform. Here is an example toolchain file:

 set (BSP "/path/to/your_MicroBlaze_design_BSP/dir" CACHE STRING "")
 set (CMAKE_SYSTEM_PROCESSOR "microblaze" CACHE STRING "")
 set (MACHINE "microblaze_generic" CACHE STRING "")
 set (CROSS_PREFIX "microblaze-xilinx-elf-" CACHE STRING "")
 set (CMAKE_C_FLAGS "-g -mlittle-endian -mxl-soft-mul -Wall -Werror \
 "-Wextra -flto -Os -I${BSP}/include" CACHE STRING "")
 link_directories(${BSP}/lib)
 SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -flto")
 SET(CMAKE_AR "gcc-ar" CACHE STRING "")
 SET(CMAKE_C_ARCHIVE_CREATE "<CMAKE_AR> qcs <TARGET> <LINK_FLAGS> <OBJECTS>")
 SET(CMAKE_C_ARCHIVE_FINISH true)
 include (cross-generic-gcc)

	Compile the libmetal library:

 $ mkdir -p build-libmetal
 $ cd build-libmetal
 $ BSP="/path/to/your_MicroBlaze_design_BSP/dir"
 $ cmake <libmetal_source> -DCMAKE_TOOLCHAIN_FILE=<toolchain_file> \
 -DCMAKE_LIBRARY_PATH=$BSP/lib
 $ make VERBOSE=1 DESTDIR=<libmetal_install> install

	build the OpenAMP library on your host as follows:

	Create your own cmake toolchain file to compile openamp for your generic
(baremetal) platform. Here is an example toolchain file:

 set (BSP "/path/to/your_MicroBlaze_design_BSP/dir" CACHE STRING "")
 set (CMAKE_SYSTEM_PROCESSOR "microblaze" CACHE STRING "")
 set (MACHINE "microblaze_generic" CACHE STRING "")
 set (CROSS_PREFIX "microblaze-xilinx-elf-" CACHE STRING "")
 set (CMAKE_C_FLAGS "-g -mlittle-endian -Wall -Wextra -flto -Os \
 -DUNDEFINE_FILE_OPS -DRPMSG_NO_IPI -I${LIBMETAL}/include \
 -I${BSP}/include" CACHE STRING "")

 set (PLATFORM_LIB_DEPS "-lxil -lc -lm -lmetal " CACHE STRING "")
 SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -flto")
 SET(CMAKE_AR "gcc-ar" CACHE STRING "")
 SET(CMAKE_C_ARCHIVE_CREATE "<CMAKE_AR> qcs <TARGET> <LINK_FLAGS> <OBJECTS>")
 SET(CMAKE_C_ARCHIVE_FINISH true)
 link_directories(${LIBMETAL}/include/ ${LIBMETAL}/lib/)
 set (CMAKE_FIND_ROOT_PATH ${LIBMETAL}/lib ${BSP}/lib)
 include (cross-generic-gcc)

	We use cmake find_path and find_library to check if libmetal headers
and library are in the includes and library search paths. However,
for non-linux system, it doesn’t work with CMAKE_INCLUDE_PATH and
CMAKE_LIBRARY_PATH variables, and thus, we need to specify those paths
in the toolchain file with CMAKE_C_FLAGS and CMAKE_FIND_ROOT_PATH.

	Compile the OpenAMP library:

$ mkdir -p build-openamp
$ cd build-openamp
$ BSP="/path/to/your_MicroBlaze_design_BSP/dir"

$ cmake <openamp_source> -DCMAKE_TOOLCHAIN_FILE=<toolchain_file> \
 -DCMAKE_INCLUDE_PATH="$LIBMETAL/include;$BSP/include" \
 -DCMAKE_LIBRARY_PATH="$LIBMETAL/lib/;BSP/lib" -DWITH_APPS=on
$ make VERBOSE=1 DESTDIR=$(pwd) install

The OpenAMP library will be built in build/usr/local/lib directory,
headers will be built in build/usr/local/include directory, and the
application executable will be built in build/usr/local/bin directory.

How to build OpenAMP Linux Userspace echo Client for ZynqMP MPSoC

To test the MicroBlaze echo server we use an rpmsg-echo-ping client from
Linux running on the Application Processing Unit (APU) in PS. To run both
the echo server on the MicroBlaze in PL from PS DDR and a Linux echo
client on APU in PS the kernel device tree needs reserved-memory nodes
for the MicroBlaze text and data including vrings. A Yocto overlay
device tree example: openamp-linux-u-MicroBlaze.dtsi

Build the OpenAMP Linux userspace library and application via Yocto.
The open-amp and libmetal recipes are in this Yocto layer:
https://github.com/OpenAMP/meta-openamp

	Add the meta-openamp layer to your layers in your Yocto build project’s
bblayers.conf file.

	Add libmetal and open-amp to your packages list. E.g. add libmetal
and open-amp to the IMAGE_INSTALL_append in the local.conf file.

	You can also add OpenAMP demos Linux applications packages to your Yocto
packages list. OpenAMP demo examples recipes are also in meta-openamp:
https://github.com/OpenAMP/meta-openamp/tree/master/recipes-openamp/openamp-examples

Sample Microblaze DTSI

/ {
	reserved-memory {
		#address-cells = <2>;
		#size-cells = <2>;
		ranges;
		rproc_0_reserved: rproc@3ed000000 {
			no-map;
			reg = <0x0 0x3ed00000 0x0 0x1000000>;
		};
		microblaze_text_data: microblaze:@70000000 {
			no-map;
			reg = <0x0 0x70000000 0x0 0x80000>;
		};
	};

	amba {
		vring: vring@0 {
			compatible = "vring_uio";
			reg = <0x0 0x3ed40000 0x0 0x40000>;
		};
		shm0: shm@0 {
			compatible = "shm_uio";
			reg = <0x0 0x3ed20000 0x0 0x0100000>;
		};
		shm1: shm@1 {
			compatible = "shm_uio";
			reg = <0x0 0x3ee40000 0x0 0x0100000>;
		};
		ipi0: ipi@0 {
			compatible = "ipi_uio";
			reg = <0x0 0xff340000 0x0 0x1000>;
			interrupt-parent = <&gic>;
			interrupts = <0 29 4>;
		};
	};
};

 Remoteproc data struct

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Remoteproc data struct

	Representation of the remote processor instance:

struct remoteproc {
	metal_mutex_t lock; /**< mutex lock */
	void *rsc_table; /**< address of the resource table */
	size_t rsc_len; /**< length of the resource table */
	struct metal_io_region *rsc_io; /**< metal I/O region of resource table*/
	struct metal_list mems; /**< remoteproc memories */
	struct metal_list vdevs; /**< remoteproc virtio devices */
	unsigned long bitmap; /**< bitmap for notify IDs for remoteproc subdevices */
	const struct remoteproc_ops *ops; /**< pointer to remoteproc operation */
	metal_phys_addr_t bootaddr; /**< boot address */
	const struct loader_ops *loader; /**< image loader operation */
	unsigned int state; /**< remote processor state */
	void *priv; /**< remoteproc private data */
};

	Representation of the remote processor virtio device:

struct remoteproc_virtio {
	void *priv; /**< private data */
	void *vdev_rsc; /**< address of vdev resource */
	struct metal_io_region *vdev_rsc_io; /**< metal I/O region of vdev_info, can be NULL */
	rpvdev_notify_func notify; /**< notification function */
	struct virtio_device vdev; /**< associated virtio device */
	struct metal_list node; /**< node for the remoteproc vdevs list */
};

Virtio Data struct

	Representation of a virtio device:

struct virtio_dev {
	uint32_t notifyid; /**< unique position on the virtio bus */
	struct virtio_device_id id; /**< the device type identification (used to match it with a driver */
	uint64_t features; /**< the features supported by both ends. */
	unsigned int role; /**< if it is virtio backend or front end. */
	virtio_dev_reset_cb reset_cb; /**< user registered device callback */
	const struct virtio_dispatch *func; /**< Virtio dispatch table */
	void *priv; /**< pointer to virtio_device private data */
	unsigned int vrings_num; /**< number of vrings */
	struct virtio_vring_info *vrings_info; /**< vrings associated to the virtio device*/
};

	Representation of a virtqueue local context:

struct virtqueue {
	struct virtio_device *vq_dev; /**< pointer to virtio device */
	const char *vq_name; /**< virtqueue name */
	uint16_t vq_queue_index; /**< virtqueue name */
	uint16_t vq_nentries;
	void (*callback)(struct virtqueue *vq); /**< virtqueue callback */
	void (*notify)(struct virtqueue *vq); /**< virtqueue notify remote function */
	struct vring vq_ring;
	uint16_t vq_free_cnt;
	uint16_t vq_queued_cnt;
	void *shm_io; /**< pointer to the shared buffer I/O region */

	/*
	 * Head of the free chain in the descriptor table. If
	 * there are no free descriptors, this will be set to
	 * VQ_RING_DESC_CHAIN_END.
	 */
	uint16_t vq_desc_head_idx;

	/*
	 * Last consumed descriptor in the used table,
	 * trails vq_ring.used->idx.
	 */
	uint16_t vq_used_cons_idx;

	/*
	 * Last consumed descriptor in the available table -
	 * used by the consumer side.
	 */
	uint16_t vq_available_idx;

	/*
	 * Used by the host side during callback. Cookie
	 * holds the address of buffer received from other side.
	 * Other fields in this structure are not used currently.
	 * Do we needed??/
	struct vq_desc_extra {
		void *cookie;
		struct vring_desc *indirect;
		uint32_t indirect_paddr;
		uint16_t ndescs;
	} vq_descx[0];
};

	Representation of a shared virtqueue structure defined in Virtual I/O Device (VIRTIO) Version 1.1:

struct vring {
	unsigned int num; /**< number of buffers of the vring */
	struct vring_desc *desc; /**< pointer to the buffers descriptor */
	struct vring_avail *avail; /**< pointer to the ring of available descriptor heads*/
	struct vring_used *used; /**< pointer to the ring of used descriptor heads */
};

RPMsg virtio Data struct

	Representation of a RPMsg virtio device:

struct rpmsg_virtio_device {
	struct rpmsg_device rdev; /**< the associated rpmsg device */
	struct rpmsg_virtio_config config; /**< structure containing the virtio configuration */
	struct virtio_device *vdev; /**< pointer to the virtio device */
	struct virtqueue *rvq; /**< pointer to the receive virtqueue */
	struct virtqueue *svq; /**< a to the send virtqueue */
	struct metal_io_region *shbuf_io; /**< pointer to the shared buffer I/O region */
	struct rpmsg_virtio_shm_pool *shpool; /**< pointer to the shared buffers pool */
};

RPMsg Data struct

	representation of a RPMsg devices:

struct rpmsg_device {
	struct metal_list endpoints; /**< list of endpoints */
	struct rpmsg_endpoint ns_ept; /**< name service endpoint */
	unsigned long bitmap[metal_bitmap_longs(RPMSG_ADDR_BMP_SIZE)]; /**< bitmap: table endpoint address allocation */
	metal_mutex_t lock; /**< mutex lock for rpmsg management */
	rpmsg_ns_bind_cb ns_bind_cb; /**< callback handler for name service announcement without local endpoints waiting to bind. */
	struct rpmsg_device_ops ops; /**< RPMsg device operations */
	bool support_ns; /**< create/destroy namespace message */
};

* Representation of a local RPMsg endpoint associated to an unique address:
struct rpmsg_endpoint {
	char name[SERVICE_NAME_SIZE]; /**< associated name service */
	struct rpmsg_virtio_dev *rvdev; /**< pointer to the RPMsg virtio device */
	uint32_t addr; /**< endpoint local address */
	uint32_t dest_addr; /**< endpoint default target address */
	int (*cb)(struct rpmsg_endpoint *ept, void *data, size_t len, uint32_t addr); /**< endpoint callback */
	void (*ns_unbind_cb)(struct rpmsg_endpoint *ept); /**< remote endpoint destroy callback */
	struct metal_list node; /**< node for the rpmsg_device endpoints list */
	void *priv; /**< user private data */
};

 Remoteproc Design Document

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Remoteproc Design Document

Remoteproc provides abstraction to manage the life cycle of a remote
application. For now, it only provides APIs on bringing up and
tearing down the remote application, and parsing resource table.
It will extend to crash detection, suspend and resume.

Remoteproc LCM States

	State

	State Description

	Offline

	Initial state of a remoteproc instance. The remote presented by the remoteproc instance and its resource has been powered off.

	Configured

	The remote presented by the remoteproc instance has been configured. And ready to load application.

	Ready

	The remote presented by the remoteproc instance has application loaded, and ready to run.

	Stopped

	The remote presented by the remoteproc instance has stopped from running. But the remote is still powered on. And the remote’s resource hasn’t been released.

[image: Rproc LCM States]

State Transition

	State Transition

	Transition Trigger

	Offline -> Configured

	Configure the remote to make it able to load application;remoteproc_configure(&rproc, &config_data)

 RPMsg Design Document

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

RPMsg Design Document

RPMsg is a framework to allow communication between two processors.
RPMsg implementation in OpenAMP library is based on virtio. It complies
the RPMsg Linux kernel implementation. It defines the handshaking on
setting up and tearing down the communication between applications
running on two processors.

RPMsg User API Flow Chats

RPMsg Static Endpoint

[image: Static Endpoint]

Binding Endpoint Dynamically with Name Service

[image: Binding Endpoint Dynamically with Name Service]

Creating Endpoint Dynamically with Name Service

[image: Creating Endpoint Dynamically with Name Service]

RPMsg User APIs

	RPMsg virtio driver to initialize the shared buffers pool(RPMsg virtio device
doesn’t need to use this API):

void rpmsg_virtio_init_shm_pool(struct rpmsg_virtio_shm_pool *shpool,
 			 void *shbuf, size_t size)

	Initialize RPMsg virtio device:

int rpmsg_init_vdev(struct rpmsg_virtio_device *rvdev,
 	 struct virtio_device *vdev,
 	 rpmsg_ns_bind_cb ns_bind_cb,
 	 struct metal_io_region *shm_io,
 	 struct rpmsg_virtio_shm_pool *shpool)

	Deinitialize RPMsg virtio device:

void rpmsg_deinit_vdev(struct rpmsg_virtio_device *rvdev)`

	Get RPMsg device from RPMsg virtio device:

struct rpmsg_device *rpmsg_virtio_get_rpmsg_device(struct rpmsg_virtio_device *rvdev)

RPMsg virtio endpoint APIs

	Create RPMsg endpoint:

int rpmsg_create_ept(struct rpmsg_endpoint *ept,
 	 struct rpmsg_device *rdev,
 	 const char *name, uint32_t src, uint32_t dest,
 	 rpmsg_ept_cb cb, rpmsg_ns_unbind_cb ns_unbind_cb)

	Destroy RPMsg endpoint:

void rpmsg_destroy_ept(struct rpsmg_endpoint *ept)

	Check if the local RPMsg endpoint is binded to the remote, and ready to send
message:

int is_rpmsg_ept_ready(struct rpmsg_endpoint *ept)

RPMsg messaging APIs

	Send message with RPMsg endpoint default binding:

int rpmsg_send(struct rpmsg_endpoint *ept, const void *data, int len)

	Send message with RPMsg endpoint, specify destination address:

int rpmsg_sendto(struct rpmsg_endpoint *ept, void *data, int len,
 	 uint32_t dst)

	Send message with RPMsg endpoint using explicit source and destination
addresses:

int rpmsg_send_offchannel(struct rpmsg_endpoint *ept,
 		 uint32_t src, uint32_t dst,
 		 const void *data, int len)

	Try to send message with RPMsg endpoint default binding, if no buffer
available, returns:

int rpmsg_trysend(struct rpmsg_endpoint *ept, const void *data,
 	 int len)

	Try to send message with RPMsg endpoint, specify destination address,
if no buffer available, returns:

int rpmsg_trysendto(struct rpmsg_endpoint *ept, void *data, int len,
 	 uint32_t dst)

	Try to send message with RPMsg endpoint using explicit source and destination
addresses, if no buffer available, returns:

int rpmsg_trysend_offchannel(struct rpmsg_endpoint *ept,
 		 uint32_t src, uint32_t dst,
 		 const void *data, int len)`

	Hold the rx buffer for usage outside the receive callback:

void rpmsg_hold_rx_buffer(struct rpmsg_endpoint *ept, void *rxbuf)

	Release the rx buffer held thanks to the rpmsg_hold_rx_buffer() function:

void rpmsg_release_rx_buffer(struct rpmsg_endpoint *ept, void *rxbuf)

	Gets the tx buffer for message payload.

void *rpmsg_get_tx_payload_buffer(struct rpmsg_endpoint *ept,
 uint32_t *len, int wait)

	Using a buffer obtained by calling the rpmsg_get_tx_payload_buffer() function,
Send a message with the RPMsg endpoint default binding:

int rpmsg_send_nocopy(struct rpmsg_endpoint *ept,
 const void *data, int len)

	Using a buffer obtained by calling the rpmsg_get_tx_payload_buffer() function,
send a message with RPMsg endpoint, specifying the destination address:

int rpmsg_sendto_nocopy(struct rpmsg_endpoint *ept,
 const void *data, int len, uint32_t dst)

	Using a buffer obtained by calling the rpmsg_get_tx_payload_buffer() function,
send a message with RPMsg endpoint using explicit source and destination addresses:

int rpmsg_send_offchannel_nocopy(struct rpmsg_endpoint *ept, uint32_t src,
 uint32_t dst, const void *data, int len)

	Releases unused Tx buffer reserved by rpmsg_get_tx_payload_buffer() function:

int rpmsg_release_tx_buffer(struct rpmsg_endpoint *ept, void *txbuf)

RPMsg User Defined Callbacks

	RPMsg endpoint message received callback:

int (*rpmsg_ept_cb)(struct rpmsg_endpoint *ept, void *data,
 	 size_t len, uint32_t src, void *priv)

	RPMsg name service binding callback. If user defines such callback, when
there is a name service announcement arrives, if there is no registered
endpoint found to bind to this name service, it will call this callback.
If this callback is not defined, it will drop this name service.:

void (*rpmsg_ns_bind_cb)(struct rpmsg_device *rdev,
 		 const char *name, uint32_t dest)

	RPMsg name service unbind callback. If user defines such callback, when
there is name service destroy arrives, it will call this callback.:

void (*rpmsg_ns_unbind_cb)(struct rpmsg_device *rdev,
 		 const char *name, uint32_t dest)

	RPMsg endpoint name service unbind callback. If user defines such callback,
when there is name service destroy arrives, it will call this callback to
notify the user application about the remote has destroyed the service.:

void (*rpmsg_ns_unbind_cb)(struct rpmsg_endpoint *ept)

 echo_test

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

echo_test

This readme is about the OpenAMP echo_test demo.
The echo_test is about one processor sends message to the other one, and the other one echo back the message. The processor which sends the message will verify the echo message.

For now, it implements Linux sends the message, and the baremetal echos back.

Compilation

Baremetal Compilation

Option WITH_ECHO_TEST is to control if the application will be built.
By default this option is ON when WITH_APPS is on.

Here is an example:

$ cmake ../open-amp -DCMAKE_TOOLCHAIN_FILE=zynq7_generic -DWITH_OBSOLETE=on -DWITH_APPS=ON

Linux Compilation

Linux Kernel Compilation

You will need to manually compile the following kernel modules with your Linux kernel (Please refer to Linux kernel documents for how to add kernel module):

	Your machine’s remoteproc kernel driver

	obsolete/apps/echo_test/system/linux/kernelspace/rpmsg_user_dev_driver if you want to run the echo_test app in Linux user space.

	obsolete/system/linux/kernelspace/rpmsg_echo_test_kern_app if you want to run the echo_test app in Linux kernel space.

Linux Userspace Compliation

	Compile obsolete/apps/echo_test/system/linux/userspace/echo_test into your Linux OS.

	If you are running generic(baremetal) system as remoteproc remote, and Linux as remoteproc host, please also add the built generic echo_test executable to the firmware of your Linux OS.

Run the Demo

Load the Demo

After Linux boots,

	Load the machine remoteproc. If Linux runs as remoteproc host, you will need to pass the other processor’s echo_test binary as firmware argument to the remoteproc module.

	If you run the Linux kernel application demo, load the rpmsg_echo_test_kern_app module. You will see the kernel application send the message to remote and the remote reply back and the kernel application will verify the result.

	If you run the userspace application demo, load the rpmsg_user_dev_driver module.

	If you run the userspace application demo, you will see the similar output on the console:

**
 Please enter command and press enter key
 **
 1 - Send data to remote core, retrieve the echo and validate its integrity ..
 2 - Quit this application ..
 CMD>

	Input 1 to send packages.

	Input 2 to exit the application.

After you run the demo, you will need to unload the kernel modules.

Unload the Demo

	If you run the userspace application demo, unload the rpmsg_user_dev_driver module.

	If you run the kernelspace application demo, unload the rpmsg_echo_test_kern_app module.

	Unload the machine remoteproc driver.

 matrix_multiply

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

matrix_multiply

This readme is about the OpenAMP matrix_multiply demo.
The matrix_multiply is about one processor generates two matrices, and send them to the one, and the other one calculate the matrix multiplicaiton and return the result matrix.

For now, it implements Linux generates the matrices, and the baremetal calculate the matrix mulitplication and send back the result.

Compilation

Baremetal Compilation

Option WITH_MATRIX_MULTIPLY is to control if the application will be built.
By default this option is ON when WITH_APPS is on.

Here is an example:

$ cmake ../open-amp -DCMAKE_TOOLCHAIN_FILE=zynq7_generic -DWITH_OBSOLETE=on -DWITH_APPS=ON

Linux Compilation

Linux Kernel Compilation

You will need to manually compile the following kernel modules with your Linux kernel (Please refer to Linux kernel documents for how to add kernel module):

	Your machine’s remoteproc kernel driver

	obsolete/system/linux/kernelspace/rpmsg_user_dev_driver if you want to run the matrix_multiply app in Linux user space.

	obsolete/apps/matrix_multiply/system/linux/kernelspace/rpmsg_mat_mul_kern_app if you want to run the matrix_multiply app in Linux kernel space.

Linux Userspace Compliation

	Compile obsolete/apps/matrix_multiply/system/linux/userspace/mat_mul_demo into your Linux OS.

	If you are running generic(baremetal) system as remoteproc remote, and Linux as remoteproc host, please also add the built generic matrix_multiply executable to the firmware of your Linux OS.

Run the Demo

Load the Demo

After Linux boots,

	Load the machine remoteproc. If Linux runs as remoteproc host, you will need to pass the other processor’s matrix_multiply binary as firmware argument to the remoteproc module.

	If you run the Linux kernel application demo, load the rpmsg_mat_mul_kern_app module, you will see the kernel app will generate two matrices to the other processor, and output the result matrix returned by the other processor.

	If you run the userspace application demo, load the rpmsg_user_dev_driver module.

	If you run the userspace application demo mat_mul_demo, you will see the similar output on the console:

**
Please enter command and press enter key
**
1 - Generates random 6x6 matrices and transmits them to remote core over rpmsg
..
2 - Quit this application ..
CMD>

	Input 1 to run the matrix multiplication.

	Input 2 to exit the application.

After you run the demo, you will need to unload the kernel modules.

Unload the Demo

	If you run the userspace application demo, unload the rpmsg_user_dev_driver module.

	If you run the kernelspace application demo, unload the rpmsg_mat_mul_kern_app module.

	Unload the machine remoteproc driver.

 rpc_demo

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

rpc_demo

This readme is about the OpenAMP rpc_demo demo.
The rpc_demo is about one processor uses the UART on the other processor and create file on the other processor’s filesystem with file operations.

For now, It implements the processor running generic(baremetal) application access the devices on the Linux.

Compilation

Baremetal Compilation

Option WITH_RPC_DEMO is to control if the application will be built.
By default this option is ON when WITH_APPS is on.

Here is an example:

$ cmake ../open-amp -DCMAKE_TOOLCHAIN_FILE=zynq7_generic -DWITH_OBSOLETE=on -DWITH_APPS=ON

Linux Compilation

Linux Kernel Compilation

You will need to manually compile the following kernel modules with your Linux kernel (Please refer to Linux kernel documents for how to add kernel module):

	Your machine’s remoteproc kernel driver

	obsolete/apps/rpc_demo/system/linux/kernelspace/rpmsg_proxy_dev_driver

Linux Userspace Compliation

	Compile obsolete/apps/rpc_demo/system/linux/userspace/proxy_app into your Linux OS.

	Add the built generic rpc_demo executable to the firmware of your Linux OS.

Run the Demo

After Linux boots, run proxy_app as follows:

proxy_app [-m REMOTEPROC_MODULE] [-f PATH_OF_THE_RPC_DEMO_FIRMWARE]

The demo application will load the remoteproc module, then the proxy rpmsg module, will output message sent from the other processor, send the console input back to the other processor. When the demo application exits, it will unload the kernel modules.

 Meeting Notes

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Meeting Notes

Meeting_Notes [https://github.com/OpenAMP/open-amp/wiki/Meeting-Notes]

TODO - Move notes to google doc drive? It may be arduous to post notes to this page

 Software License Agreement (BSD 3-Clause License)

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Software License Agreement (BSD 3-Clause License)

Copyright (c) 2014, Mentor Graphics Corporation. All rights reserved.
Copyright (c) 2015 - 2016 Xilinx, Inc. All rights reserved.
Copyright (c) 2016 Freescale Semiconductor, Inc. All rights reserved
Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of

 openamp-system-reference

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

openamp-system-reference

End-to-end system reference material showcasing all the different aspects of OpenAMP, on multiple vendor platforms.

 Building DTBs

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Building DTBs

	You will need a copy of the Linux source tree

	For consitency use the same kernel version as the OpenAMP-CI Builds is using

	Below we assume the kernel source is at ~/my-dir/kernel-source

	`make LINUX_SRC_DIR=~/my-dir/kernel-source’

 Zephyr Example Application

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

Zephyr Example Application

This repository contains Zephyr example applications. The main purpose of this
repository is to provide references and demo on the use of OpenAMP on Zephyr based applications. features demonstrated in this example are:

	rpmsg multi service application

	dual qemu ivshmem application

Getting Started

Before getting started, make sure you have a proper Zephyr development
environment. You can follow the official
Zephyr Getting Started Guide [https://docs.zephyrproject.org/latest/getting_started/index.html].

Initialization

The first step is to initialize the workspace folder (my-workspace) where
the examples and all Zephyr modules will be cloned. You can do
that by running:

initialize my-workspace for the example-application (main branch)
west init -m https://github.com/OpenAMP/openamp-system-reference --mr main my-workspace
update Zephyr modules
cd my-workspace
west update

Build and run on a board

The application can be built by running:

west build -b $BOARD `$ZEPHYR_EXAMPLE`

where $BOARD is the target board and $ZEPHYR_EXAMPLE.
Note that Zephyr sample boards may be used if an appropriate overlay is provided (see app/boards).

A sample debug configuration is also provided. You can apply it by running:

west build -b $BOARD $ZEPHYR_EXAMPLE -- -DOVERLAY_CONFIG=debug.conf

Example to compile rpmsg_multi_services on stm32mp157 discovery board:

west build -b stm32mp157c_dk2 openamp-system-reference/examples/zephyr/rpmsg_multi_services

Running on a board

We consider here board on which the Zephyr image is running on a coprocessor.

	Once you have built the application copy it on target filesystem.

	Load the Zephyr firmware and start the coprocessor depending on the board.

Example of a Zephyr firmware image loading by the Linux kernel remoteproc framework.

cp $ZEPHYR_EXAMPLE.elf /lib/modules/
echo $ZEPHYR_EXAMPLE.elf > /sys/class/remoteproc/remoteproc0/firmware
echo start >/sys/class/remoteproc/remoteproc0/state

Running in an Emulator

To be described

 OpenAMP RPMSG over IVSHMEM system reference sample

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

OpenAMP RPMSG over IVSHMEM system reference sample

This application sample implements an RPMSg echo communication between
two QEMU instances based on the ARM Cortex A53 CPU, to use the RPMsg protocol
from the openAMP a backend was built on top of the Zephyr Inter-VM Shared
Memory (IVSHMEM) driver is implemented. A simple shell command provides to the
user an interaction with the application allowing to send data to a number
of times and receiving that data echoed from the other QEMU instance.

Prerequisites

	Tested with Zephyr version 3.4.0

	Tested with Zephyr SDK 0.16.1

	QEMU needs to available.

Note:

	The Vendor-ID 0x1AF4 is being used from all other Zephyr in-tree samples, currently there

is no Vendor allocated with the selected number.

ivshmem-server needs to be available and running. The server is available in
Zephyr SDK or pre-built in some distributions. Otherwise, it is available in
QEMU source tree.

Optionally the ivshmem-client, if available, can help to troubleshoot the
IVSHMEM communication between QEMU instances.

Preparing IVSHMEM server before doing anything:

	The ivshmem-server utillity for QEMU can be found into the zephyr sdk
directory, in:
/path/to/your/zephyr-sdk/zephyr-<version>/sysroots/x86_64-pokysdk-linux/usr/xilinx/bin/

	You may also find ivshmem-client utillity, it can be useful to debug if everything works
as expected.

	Run ivshmem-server. For the ivshmem-server, both number of vectors and
shared memory size are decided at run-time (when the server is executed).
For Zephyr, the number of vectors and shared memory size of ivshmem are
decided at compile-time and run-time, respectively.For Arm64 we use
vectors == 2 for the project configuration in this sample. Here is an example:

n = number of vectors
$ sudo ivshmem-server -n 2
$ *** Example code, do not use in production ***

	Appropriately set ownership of /dev/shm/ivshmem and
/tmp/ivshmem_socket for your deployment scenario. For instance:

$ sudo chgrp $USER /dev/shm/ivshmem
$ sudo chmod 060 /dev/shm/ivshmem
$ sudo chgrp $USER /tmp/ivshmem_socket
$ sudo chmod 060 /tmp/ivshmem_socket

Building and Running

There are host and remote side projects, and they should be built individually, for the host side
open a terminal and then type:

$ cd path/to/this-repo/examples/zephyr/dual_qemu_ivshmem/host
$ west build -pauto -bqemu_cortex_a53

For the remote side, open another terminal window and then type:

$ cd path/to/this-repo/examples/zephyr/dual_qemu_ivshmem/remote
$ west build -pauto -bqemu_cortex_a53

	Note: Warnings that appear are from ivshmem-shell subsystem and can be ignored.

After getting the both applications built, open two terminals and run each
instance separately, please note the Host instance MUST be run FIRST and remote
instance AFTER, this is needed in order to make both instances to know what is the
other peer IVSHMEM ID.

For example to run host instance:

$ cd path/to/this-repo/examples/zephyr/dual_qemu_ivshmem/host
$ west build -t run

For the remote instance, just go to the remote side directory in another terminal:

$ cd path/to/this-repo/examples/zephyr/dual_qemu_ivshmem/remote
$ west build -t run

Expected output:

After running both host and remote QEMU instances in their own terminal tabs, and
in the RIGHT ORDER, that is it, first the host instance followed by remote instance
go to the host instance terminal, you should see something like this:

uart:~$ *** Booting Zephyr OS build v3.4.0-rc2-91-gbf0f58d69816 ***
Hello qemu_cortex_a53 - Host Side, the communication over RPMsg is ready to use!

If nothing appears, make sure you are running the remote instance after this one, because
the host side after started to run, wait for the remote one to get running, and after
this it becomes ready to use.

Having the initial boot message, go to the remote instance, and check it initial message
on console you may see something like this:

*** Booting Zephyr OS build v3.4.0-rc2-91-gbf0f58d69816 ***
Hello qemu_cortex_a53 - Remote Side, the communication over RPMsg is ready to use!

Then go back to the host side terminal window, and issue the custom shell command
rpmsg_ivshmem send and you should see how to use that:

uart:~$ rpmsg_ivshmem send
send: wrong parameter count
send - Usage: rpmsg_ivshmem send <string> <number of messages>

Send a string to the remote side, specify also how many times it should be sent,
this command will send the data over RPMsg-IVSHMEM backend and the remote side
will reply back echoing the sent string, on the host terminal this should take
an output similar like the shown below:

uart:~$ rpmsg_ivshmem send "RPMsg over IVSHMEM" 10
Remote side echoed the string back:
[RPMsg over IVSHMEM]
at message number 1

Remote side echoed the string back:
[RPMsg over IVSHMEM]
at message number 2

Remote side echoed the string back:
[RPMsg over IVSHMEM]
at message number 3

Remote side echoed the string back:
[RPMsg over IVSHMEM]
at message number 4

Remote side echoed the string back:
[RPMsg over IVSHMEM]
at message number 5

Remote side echoed the string back:
[RPMsg over IVSHMEM]
at message number 6

Remote side echoed the string back:
[RPMsg over IVSHMEM]
at message number 7

Remote side echoed the string back:
[RPMsg over IVSHMEM]
at message number 8

Remote side echoed the string back:
[RPMsg over IVSHMEM]
at message number 9

Remote side echoed the string back:
[RPMsg over IVSHMEM]
at message number 10

On the remote side terminal window is possible also to check the messages
arriving from host:

*** Booting Zephyr OS build v3.4.0-rc2-91-gbf0f58d69816 ***
Hello qemu_cortex_a53 - Remote Side, the communication over RPMsg is ready to use!

uart:~$ Host side sent a string:
[RPMsg over IVSHMEM]
Now echoing it back!

Host side sent a string:
[RPMsg over IVSHMEM]
Now echoing it back!

Host side sent a string:
[RPMsg over IVSHMEM]
Now echoing it back!

Host side sent a string:
[RPMsg over IVSHMEM]
Now echoing it back!

Host side sent a string:
[RPMsg over IVSHMEM]
Now echoing it back!

Host side sent a string:
[RPMsg over IVSHMEM]
Now echoing it back!

Host side sent a string:
[RPMsg over IVSHMEM]
Now echoing it back!

Host side sent a string:
[RPMsg over IVSHMEM]
Now echoing it back!

Host side sent a string:
[RPMsg over IVSHMEM]
Now echoing it back!

Host side sent a string:
[RPMsg over IVSHMEM]
Now echoing it back!

This sample supports huge message number in order to do stress testing, something like
rpmsg_ivshmem send "Test String" 10000000000000, can be used for that, notice that
this command is blocking and have a 5 second timeout, returning if something goes wrong,
for example shutdown the remote side unexpectedly:

uart:~$ rpmsg_ivshmem send "RPMsg over IVSHMEM" 10
Remote side response timed out!
uart:~$

Known limitation:

The limitation of this sample is in respect to the instances shutdown, if for some
reason host side or remote side get turned-off it MUST NOT be reinitialized individually,
in case of occurrence, both instances should be stopped and re-initialized following the
order constraints mentioned before (first run the host side followed by the remote side).

 OpenAMP Sample Application using resource table

 This is the documentation for the latest (main) development branch.
 If you are looking for the documentation of previous releases, use
 the drop-down menu on the left and select the desired version.

OpenAMP Sample Application using resource table

Overview

This application demonstrates how to use OpenAMP with Zephyr based on a resource
table. It is designed to respond to the:

	Linux rpmsg client sample [https://elixir.bootlin.com/linux/latest/source/samples/rpmsg/rpmsg_client_sample.c]

	Linux rpmsg tty driver [https://elixir.bootlin.com/linux/latest/source/drivers/tty/rpmsg_tty.c]

This sample implementation is compatible with platforms that embed
a Linux kernel OS on the main processor and a Zephyr application on
the co-processor.

Building the application

Zephyr

Linux

Enable SAMPLE_RPMSG_CLIENT configuration to build and install
the rpmsg_client_sample.ko module on the target.

Running the sample

Zephyr console

Open a serial terminal (minicom, putty, etc.) and connect the board with the
following settings:

	Speed: 115200

	Data: 8 bits

	Parity: None

	Stop bits: 1

Reset the board.

Linux console

Open a Linux shell (minicom, ssh, etc.) and insert a module into the Linux Kernel

root@linuxshell: insmod rpmsg_client_sample.ko

Result on Zephyr console on boot

The following message will appear on the corresponding Zephyr console:

***** Booting Zephyr OS v#.##.#-####-g########## *****
Starting application thread!

OpenAMP demo started
Remote core received message 1: hello world!
Remote core received message 2: hello world!
Remote core received message 3: hello world!
...
Remote core received message 100: hello world!
OpenAMP demo ended.

rpmsg TTY demo on Linux console

On the Linux console send a message to Zephyr which answers with the “TTY <add>” prefix.
<addr> corresponds to the Zephyr rpmsg-tty endpoint address:

$> cat /dev/ttyRPMSG0 &
$> echo "Hello Zephyr" >/dev/ttyRPMSG0
TTY 0x0401: Hello Zephyr

_images/core_to_core_interrupt.jpg
Core 2 to Core 1 Interrupt

core1 le—p| Shared

Memory

Core 1 to Core 2 Interrupt

_images/darkmode_toggle.png
Q- Search

_images/interactive_toc_mobile.png
> Table of Contents

_images/lcm.jpg
Master

‘Application calls
remotepro

Decode firmware elfimage
and obtain resource table

—

Carve-out memory for
firmware txt and data

\—t—/

)

Create rpmsg/rproc (Linux)
VirtlO device on master for
comms with remote

Application calls
remoteproc_boot APl

Load txt and data for
remote firmware

e

Start remote processor

(S
Firmware

creation

Application

RTOS or BM
lib

Tsed to publish
remote’s

libopen_amp.a

ource Table

Resource Table

Memory fcarve-out for firmware code

I:ﬂ:l /e BM or RTOS boot sequence

rpmsg comms

Remote

)

—

Application calls
remoteproc_resource_init
APL

p—

Creates memory mappings
based on rsc table contents

|

—

Create rpmsg VirtlO device
and rpmsg channels for
remote

Advertise remote channels
to master

_images/fragment_copy_button.png
// code within @code block

if(true) {
auto example = std::make_shared<Example>(5);
example->test("test");

_images/lcm_boot.jpg
Remote firmware creation process for RTOS or Baremetal
as remote firmware

\
v

| Application

4}' RTOS or BM lib ||{]:|

openamp.lib I

Remote firmware creation process for Linux as remote

firmware

Linux kemnel +
initramfs

b

DTB

Create
Flattened
Image

Tree

Workflow tocreate
bootable Linux FIT image as
supported by Petalinux

Linux FIT image.

Bootstrap +
libFDT +

Zlib+
Resource table

Provided

OpenaAMP

Compile
and link

Remote
firmware
ELFimage

ELF image consists
* Linux FIT image.
* Resource table
+ Bootstrap + ibFDT + zlib

Create ELF > ELF firmware

_images/memory_layout.jpg
Hoptcation
rpeocpiatiorm || rpmg kernel Lnuox
ariver aover. Code/Data/BSS/Heap
[| p—
nocharne | Nucleus
Code/Data/sss/Heap
Bare metal
Code/Data/ss/Heap
Bl Trand X wings
soptcation Buffer memory Je—
[| p— o
|, [—Tand cvrings
Nucleus RT0S e Bare metal

_images/openamp_components.jpg
remoteproc

)

LN

remeteproc

£

| ooss [Rr0sor rosor e[Linux RTOS or RTOSor
Bare Metal Bare metal Bare metal Bare Metal
Temorepror
OpenaMp. I OpenaMp. Openatp.
Master Remote Master Remote Master Remote
core Core Core core Core core
Master Remate Master Remote Master Remote

nav.xhtml

 Table of Contents

 		
 Welcome to the OpenAMP Project Documentation

 		
 OpenAMP Project

 		
 Project Overview

 		
 OpenAMP Intro

 		
 Operating Environments

 		
 OpenAMP Capabilities

 		
 OpenAMP Guidelines

 		
 Samples and Demos

 		
 System Reference Samples and Demos on the AMD-Xilinx platform

 		
 System Reference Samples and Demos on STM32MP157C/F-DK2 board

 		
 linux_rpc_demo

 		
 OpenAMP Demo Docker images

 		
 Hypervisorless virtio binary demo (openamp/demo-lite)

 		
 Lopper Demonstration

 		
 Contributing to the OpenAMP Project

 		
 Release Cycle

 		
 Roadmap discussion and publication

 		
 Patch process

 		
 Platform maintainers

 		
 Push rights

 		
 Links

 		
 OpenAMP Protocol Details

 		
 Asymmetric Multiprocessing Intro

 		
 Components and Capabilities

 		
 RPMsg Messaging Protocol

 		
 Protocol Layers

 		
 RPMsg Protocol Limitations

 		
 RPMsg Communication Flow

 		
 Life Cycle Management

 		
 LCM Overview

 		
 Creation and Boot of Remote Firmware Using remoteproc

 		
 System Wide Considerations

 		
 Resource Table Evolution

 		
 Overview

 		
 Needs

 		
 Enhancement

 		
 Mechanisms

 		
 OpenAMP Design Docs

 		
 OpenAMP Libraries User Guide

 		
 Data Structures

 		
 Porting GuideLine

 		
 Add System/Machine Support in Libmetal

 		
 Platform Specific Remoteproc Driver

 		
 Platform Specific Porting to Use Remoteproc to Manage Remote Processor

 		
 Platform Specific Porting to Use RPMsg

_images/rpmsg_endpoint.jpg
Application
Endpoints
sre=1,dst=2
RPMSG RPMSG PKT
channel channel
Data
4 src
Master (P1)
2 dst
Application
Application
=
Endpoints dst 1 —
. 2 Endpoint src=2,dst=1
Data
RPMSG PKT RPMSG
channel ey
Remote (P2)

Remote (P3)

_images/rpmsg_flags.jpg
MSb

RPMsg header -> flags

15

14

13

12

11

10

UNUSED: unused bits

LSk

_images/paragraph_link.png
Examples

_images/protocol_layers.jpg
RPMsg Lite,
OpenAMP RPMsg,

Virtlo, Virtqueue,
Vring

Shmem, MU,
Mailbox

RPMsg

VIrtI0 / Virtqueue

Shared Memory.
Inter-core Tnterrupts

Transport Layel

MAC Layer

Physical Layer

_images/rproc-lcm-state-machine.png
Configured

_images/screenshot.png
eee M+ < e Q)

Doxygen Awesome

Modern Doxygen theme

staticfunc()
Q -0- static bool MyLibrary::Example: : g{ihRelqvitol)

Deprecated List

Todo List test ()
Namespaces
std::strin vLibrary: :Example::test (const std::string & test
Classes I g ¥ 2 (&)
Class List .
57 summary
MyLibrary

doxygen test documentation

SubclassExample Parameters

Class Index test this is the only parameter of this test function. It does nothing!

Class Hierarchy

MyLibrary | Example Generated by doxygen 1.9.2

_images/rpmsg_flow.jpg
Core A (Master)

Get transmission
buffer

Get received
buffer from queue

¥

¥

‘Write RPMsg Header Pass it to the
and payload data endpoint calback

Enqueue the

Enqueue the buffer e b

Core B (Remote)

Core A (Master)

Get received
buffer from queue

(4

Get transmission
buffer

¥

¥

Passittothe Write RPMsg Header
endpoint calback and payload data
Ef:;fgﬁézf Enqueue the buffer

Core B (Remote)

_images/rpmsg_header.jpg
RPMsg Memory Layout

source address (32bit)

destination address (32bit)

reserved (32bit)

user payload

length (16bit)

MSb

LSb

_images/topo_types.jpg
Master managing two remote contexts instar topology Two master contexts managing.

Processor 1 Proceszor2 Proceszor3

_images/vrings.jpg
VRING

In Shared Memory
32 bit
>

Buffer Descriptors

"Available” Ring Buffer

"Used" Ring Buffer

@

_images/vrings_used_buffers.jpg
VRING -> USED RING BUFFER

id (32bit)

[0]
length (32bit)

MSb LSb

_images/vring_descriptor.jpg
buffer address (64bit)

buffer length (32bit)

flags (16bit)

_images/vring_descriptor_flags.jpg
VRING -> BUFFER DESCRIPTOR -> FLAGS

msbf 15 [14 | 13 [12|11 f10] 9|8

’ ° ° 4 : _LSE

. F_NEXT: next feld contains link to next buffer in this chain

. F_WRITE: buffer is write-only (f not set, read-only)

. F_INDIRECT: buffer contains a lst of buffer descriptors
(currently unused)

UNUSED: unused bits

_static/file.png

_images/vrings_used_buffers_flags.jpg
Msb|

'VRING -> USED RING BUFFER -> FLAGS

15|14 f1312f11fw0]|ofs

[onvom:somttger et
updating used ring head

UNUSED: unused bits

_static/minus.png

_static/images/header-bg.jpg

_static/plus.png

_static/images/linaro-logo.png

_static/images/openAMP_LOGOMARKX.png
>

_static/images/openAMP_combobox.png
Qi

_static/images/openAMP_share_image.png
Q

_static/images/strap_image.png

_static/images/triangle_background.png

_images/coprocessor-rpmsg-ns-dynamic.png
— 17roc = remoteproc (& remoeproc_ops, &arg);

A A

calls remoteproc_load() to load applicaiton

rproc = remoteproc_init(&remoteproc_ops, &arg);

A J

ret=remoteproc_boot(&rproc)

A J

ret = remoteproc_sef_rsc_table(proc, &rsc_table, rsc_size)

y
vdev=remoteproc_create_virtio(tproc, rpmsg_vdev_id, MASTER, NULL),

A J

vdev=remoteproc_create_virtio(tproc, rpmsg_vdev_id, SLAVE, rst_cb);

y
rpmsg_virtio_init_shm_pool(shpool, shbuf, shbuf_pool_size);

y
rpdev=rpmsg_init_vdev(ipvdev, vdev, ns_bind_cb, &shm_io, NULL);

A
-
A

v rpmsg_ns_callback() will see if there is a local ep registered.

| NSannoucement ot e bind the ep; otherwise, it will call ns_bind_cb().

epi=rpmsg_create_ept(ept, rdev, ept_name, ept_addr, dest_addr,
endpoint_cb, ns_unbind_cb); v

s_rpsmg_ns_bind_cb(epl_name, remofc_addr)

vy A

rpmsg_ns_callback() will see if there is a local ep registered. |@—Noumoucement | oo create_endpoint(ept, rdev, ept_name, epi_addr, remote_addr,

If yes, bind the ep; otherwise, call ns_bind_cb. endpoint_cb, ns_unbind_cb);

y

endpoint_cb(ept, data, size, src_addr)

rpmsg_rx_callback()
. RPMsg data

pmsg_send(ept.data)

endpoint_cb(ept, data, size, src_addr)

Endpoint destroy NS

> rpmsg_ns_callback() will call the previous

rpmsg_destroy_endpoint(ept)
registered endpoint unbind callback

_images/coprocessor-rpmsg-ns.png
rproc = remoteproc_init(&remoteproc_ops, &arg);

y y
_ rpdev=rpmsg_init_vdev(ipvdev, vdev, ns_bind_cb, &shm_io, shpool); rpdev=rpmsg_init_vdev(ipvdev, vdev, ns_bind_cb, &shm_io, NULL);

vy
calls remoteproc_load() to load applicaiton @
vy
ret=remoteproc_boot(&rproc) 1proc = remoteproc_init(&remoteproc_ops, &arg).
vy vy
vdev=remoteproc_create_virtio(tproc, rpmsg_vdev_id, MASTER, NULL); ret = remoteproc_sel_rsc_table(rproc, &rsc_table, rsc_size)
vy vy
tpmsg_virtio_init_shm_pool(shpool, shbuf, shbuf_pool_size); vdev=remoteproc_create_virtio(tproc, rpmsg_vdev_id, SLAVE, rst_cb);

A A

rpmsg_ns_callback() will see if there is a local ep registered. je—Noumoucement | oo create_epi(ept, rdev, epl_name, ept_addr, desi_addr,

If yes, bind the ep; otherwise, call ns_bind_cb. endpoint_cb, ns_unbind_cb);

A J

A J

RPMsg data

ept=rpmsg_create_epi(ept, rdev, ept_name, epl_uddr, dest_addr, |——Noamnoucement {1 n catlback() will see if there is a local ep registered.
endpoint_cb, ns_unbind_cb); If yes, bind the ep; otherwise, call ns_binc_cb.

pmsg_send(ept.data)

»| rpmsg_rx_callback()

dpoint_cb(ept, data, size, src_add
s ox_callback) endpoint_cb(ept, data, size, src_addr)
. RPMsg data
I
]

pmsg_send(ept.data)

endpoint_cb(ept, data, size, src_addr)

1pmsg_destroy_endpoint(ept) Endpoint destroy NS

> rpmsg_ns_callback() will call the previous
registered endpoint unbind callback

_images/coprocessor-rpmsg-static-ep.png
rproc = remoteproc_init(&remoteproc_ops, &arg);

: G
calls remoteproc_load() to load applicaiton
A J rproc = remoteproc_init(&remoteproc_ops, &arg);
_ rememorepros boo &)

v

ret = remoteproc_sef_rsc_table(proc, &rsc_table, rsc_size)

y
vdev=remoteproc_create_virtio(tproc, rpmsg